Members of the department and college administration and faculty will attend 2017 GeoInt Symposium in San Antonio, Texas.
Join us at the largest gathering in the nation of geospatial intelligence. We will be at booth 920.
The United States Geospatial Intelligence Foundation (USGIF) is hosting a career panel!
Local GIS managers, career advisors, GIScientists from the federal and private sector with hiring experience will inform you about their careers, organizations, and what they look for in job or internship applicants. So, come and get great advice about how to launch or reinvigorate your geospatial career.
Panelists:
Heather FitzGerald, National Geospatial-Intelligence Agency (NGA)
Ian Harvy, PricewaterhouseCoopers (PwC)
Rob Miller, Hawkeye 360
Justin Franz, United States Geospatial Intelligence Foundation (USGIF)
This career panel is sponsored by USGIF’s Young Professional Group with professionals from local and national agencies working in our fields.
Join the Department of Geography and Geoinformation Science at our annual GIS Day event.
This is an opportunity for students to show off work to peers, colleagues, professors, and the many others that attend our GIS Day Event. In an effort to reward and stimulate the presentation of research, we hold an annual poster contest with $$MONEY$$ prizes for the winners. The GGS department will even print your poster for you!
This year’s competition is open to 3 categories of posters:
- Undergraduate Individual Poster
- Undergraduate Group Poster
- Graduate Individual Poster
Posters must include a geographic theme, but we welcome students from all disciplines engaged in spatial research. Contact Dr. Leslie (tleslie@gmu.edu) by October 27th to compete. All welcome at the showcase.
Fairfax County and VDOT have put together a two-day hackathon on transportation and mobility. Teams are invited to use publically available datasets to solve pressing transportation issues.
“REINFORCEMENT LEARNING WITH SPATIAL APPLICATIONS”
Abstract:
Smart cities offer more and more real-time information
provided by sensor networks and traffic cameras. This information can be
very valuable for transportation planing and analysing user behaviour.
For instance, knowing which parking spots are currently available close
to my destination is very valuable in order to reduce the travel time
and thus, maximize the resource usage and minimize the traffic load. The
future development of this information is usually uncertain (i.e.
non-deterministic). However, algorithms for routing applications should
consider that new information will become available during travelling
along the computed path. In order to exploit the provided information to
a full extend, it is not sufficient to compute a static route or travel
plan because the optimality of the plan might degrade as the state of
the environment might consistently change.
In order to plan transportation and understand observed trajectories in
smart environments, it is necessary to compute action policies instead
of static routes. A policy provides the most promising action for all
situations and in particular, the encountered situations. Analogously,
it makes sense to understand human behaviour based on the sequence of
decisions in the encountered situations. To compute and analyse
policies, the field of reinforcement learning already provides a rich
set of tools.
Matthias Schubert’s Bio:
Matthias Schubert is a professor for Computer Science at the LMU
Munich. He is one of the founders of the Data Science Lab @LMU Munich
and a member of the Munich Competence Center for Machine Learning. His
research interests comprise spatial information systems, representation
learning and artificial intelligence in non-deterministic environments.