Program Change Request

Date Submitted: 04/28/20 5:40 pm

Viewing: SC-BS-PHYS : Physics, BS

Last approved: 10/23/19 11:21 am

Last edit: 04/28/20 5:44 pm

Changes proposed by: prubin

Catalog Pages Using this Program <u>Physics, BS</u>

Are you completing this form on someone else's behalf?

	No
Effective Catalog:	2020-2021
Program Level:	Undergraduate
Program Type:	Bachelor's
Degree Type:	Bachelor of Science
Title: Physics, BS	
Banner Title:	Physics, BS
Registrar/OAPI Use Only – SCHEV Status	Approved
Registrar's Office	
Use Only – Program Start Term	

In Workflow

- 1. PHYS UG
 - Committee
- 2. PHYS Chair
- 3. SC Curriculum Committee
- 4. SC Associate Dean
- 5. SC CAT Editor
- 6. Assoc Provost-Undergraduate
- 7. Registrar-Programs: Duration
- 8. Registrar-Programs

Approval Path

- 1. 05/13/20 9:35 am Philip Rubin (prubin): Approved for PHYS UG Committee
- 2. 05/13/20 11:07 am Paul So (paso): Approved for PHYS Chair

History

- 1. Nov 17, 2017 by clmig-jwehrheim
- 2. Feb 20, 2018 by Rebekah Zacharias (rzachari)
- 3. Mar 6, 2018 by Jennifer Bazaz Gettys (jbazaz)

 4. Mar 8, 2018 by Jennifer Bazaz Gettys (jbazaz)
5. Oct 23, 2019 by

Philip Rubin (prubin)

	Associated Concentrations	Registrar's Office Use Only: Concentration Code
1	Applied and Engineering Physics	PHAE
2	Astophysics	РНАР
3	Computational Physics	РНСР

Registrar/IRR Use
Only –
Concentration CIP
CodeSecond
College/School:College/School:College of ScienceDepartment /
Academic Unit:Physics & AstronomyJointly OwnedNo

Academic Themes:

Justification

Program?

Add another course to the physics theory choice list for applied and engineering physics concentration and no-concentration options, and two ECE courses to the practical work choice list of the applied and engineering physics concentration.

Total CreditsTotal credits: minimum 120Required:

Registrar's Office Use Only - Program Code:

SC-BS-PHYS

Registrar/IRR Use Only – Program CIP Code

Admission Requirements:

Admissions

University-wide admissions policies can be found in the <u>Undergraduate Admissions Policies</u> section of this catalog. To apply for this program, please complete the <u>George Mason University Admissions Application</u>.

Program-Specific Policies:

Policies

Students must fulfill all <u>Requirements for Bachelor's Degrees</u> including the <u>Mason Core</u>. The intensive writing requirement is fulfilled by taking <u>PHYS 407</u> Senior Laboratory in Modern Physics <u>(Mason Core)</u>, <u>PHYS 410</u> Computational Physics Capstone <u>(Mason Core)</u>, or <u>ASTR 402</u> RS: Methods of Observational Astronomy <u>(Mason Core)</u>, which are also capstone courses for the major. For policies governing all undergraduate programs, see <u>AP.5 Undergraduate Policies</u>.

Double Majors

Students considering a double major with physics should discuss this option with the respective undergraduate coordinators.

Note that at least 18 credits used to fulfill the Physics, BS cannot be used to fulfill another major or minor. Some course substitutions are allowed for double majors, but these should be discussed with a physics advisor in advance.

Alternative Introductory Sequence

Normally, students who intend to major in physics should take the physics introductory sequence:

<u>PHYS 160</u>	University Physics I <u>(Mason Core)</u>	3
<u>PHYS 161</u>	University Physics I Laboratory <u>(Mason Core)</u>	1
<u>PHYS 260</u>	University Physics II <u>(Mason Core)</u>	3
<u>PHYS 261</u>	University Physics II Laboratory <u>(Mason Core)</u>	1
Students who decide to major in physics after completing <u>PHYS 243</u> College Physics I <u>(Mason Core)</u> , <u>PHYS 244</u>		

College Physics I Lab <u>(Mason Core)</u>, <u>PHYS 245</u> College Physics II <u>(Mason Core)</u> and <u>PHYS 246</u> College Physics II Lab <u>(Mason Core)</u> are welcome, but are required to obtain written permission from the <u>Department of Physics and</u> <u>Astronomy</u> before a change of major can be approved.

Degree Requirements:

Students should refer to the <u>Admissions & Policies</u> tab for specific policies related to this program. Students must complete a total of 75 credits in the major (69 credits if completing a second major), including at least 11 credits in mathematics, with a minimum GPA of 2.00.

Students must complete the coursework described below and either select a concentration or select the "BS without Concentration" option:

Physics Core Courses

<u>PHYS 161</u>	University Physics I Laboratory <u>(Mason Core)</u>	1
<u>PHYS 251</u>	Introduction to Computer Techniques in Physics	3
<u>PHYS 260</u>	University Physics II <u>(Mason Core)</u>	3
<u>PHYS 261</u>	University Physics II Laboratory <u>(Mason Core)</u>	1
<u>PHYS 301</u>	Analytical Methods of Physics	3
<u>PHYS 303</u>	Classical Mechanics	3
<u>PHYS 305</u>	Electromagnetic Theory 1	3
<u>PHYS 307</u>	Thermal Physics	3
<u>PHYS 308</u>	Modern Physics	3
<u>PHYS 402</u>	Introduction to Quantum Mechanics and Atomic Physics	3
<u>PHYS 416</u>	Undergraduate Physics Review	1
Total Credits		30
	his majority is an air a single and when its many substitute FCF 205. Firstware an atio The same fac	

1Students double majoring in engineering and physics may substitute <u>ECE 305</u> Electromagnetic Theory for <u>PHYS 305</u> Electromagnetic Theory.

Mathematics

Analytic Geometry and Calculus I <u>(Mason Core)</u>	4
Analytic Geometry and Calculus II	4
Analytic Geometry and Calculus III	3
	11
	Analytic Geometry and Calculus II Analytic Geometry and Calculus III

BS without Concentration

Mathematics/Computational Physics 6		6
Select 6 credits from the following:		
<u>MATH 203</u>	Linear Algebra	
<u>MATH 214</u>	Elementary Differential Equations	
<u>PHYS 325</u>	Intermediate Methods of Experimental Physics	
Intermediate Laborate	ory	6
<u>PHYS 311</u>	Instrumentation	
<u>PHYS 312</u>	Waves and Optics	
Research, Internship, or Independent Study 3		3
Select 3 credits from	the following:	
<u>PHYS 326</u>	Problems in Physics II	
<u>PHYS 405</u>	Honors Thesis in Physics I	
<u>PHYS 406</u>	Honors Thesis in Physics II	
<u>PHYS 408</u>	Senior Research	
<u>PHYS 409</u>	Physics Internship	
Capstone		4
<u>PHYS 407</u>	Senior Laboratory in Modern Physics (<u>Mason Core)</u> 1	
<u>PHYS 410</u>	Computational Physics Capstone (Mason Core) 1	

All students complete the following 9 credits:

<u>PHYS 306</u>	Wave Motion and Electromagnetic Radiation
<u>PHYS 403</u>	Quantum Mechanics II
<u>PHYS 428</u>	Relativity

Only students who are not completing a second major must select 6 additional credits from the following:

'	
<u>ASTR 210</u>	Introduction to Astrophysics
<u>ASTR 328</u>	Stars
<u>ASTR 403</u>	Planetary Science
<u>ASTR 404</u>	Galaxies and Cosmology
<u>PHYS 331</u>	Physics of Renewable Energy
<u>PHYS 370</u>	Molecular Biophysics
<u>PHYS 412</u>	Solid State Physics and Applications
<u>PHYS 440</u>	Nuclear and Particle Physics
<u>PHYS 465</u>	Planetary Atmospheres and lonospheres
<u>PHYS 475</u>	Atmospheric Physics

Total Credits

1 Fulfills the writing intensive requirement.

Applied and Engineering Physics Concentration (PHAE)

Mathematics/Con	nputational Physics	3
<u>PHYS 325</u>	Intermediate Methods of Experimental Physics	
Intermediate Labo	pratory	6
<u>PHYS 311</u>	Instrumentation	
<u>PHYS 312</u>	Waves and Optics	
Physics Theory		9
<u>PHYS 306</u>	Wave Motion and Electromagnetic Radiation	
Select 6 credits fro	om the following:	
<u>PHYS 331</u>	Physics of Renewable Energy	
<u>PHYS 370</u>	Molecular Biophysics	
<u>PHYS 403</u>	Quantum Mechanics II	
<u>PHYS 412</u>	Solid State Physics and Applications	
Capstone		4
Select 4 credits fro	om the following:	
<u>PHYS 407</u>	Senior Laboratory in Modern Physics <u>(Mason Core)</u> 1	
<u>PHYS 410</u>	Computational Physics Capstone (Mason Core) 1	
Practical Work		6-
		12

Students who are not completing a second major should select 12 credits from the following. Students who are completing a second major should select 6 credits:

28-34

<u>PHYS 405</u>	Honors Thesis in Physics I
<u>PHYS 406</u>	Honors Thesis in Physics II
<u>PHYS 408</u>	Senior Research
<u>PHYS 409</u>	Physics Internship
<u>BENG 320</u>	Bioengineering Signals and Systems
<u>ECE 415</u>	Power System Analysis
<u>ECE 416</u>	Electric Machines and Drives
Or other approved	d 300 or 400-level Volgenau School of Eng

Or other approved 300 or 400-level Volgenau School of Engineering courses Total Credits

1 Fulfills the writing intensive requirement.

Astrophysics Concentration (PHAP)

Mathematics/Co	omputational Physics	6
<u>ASTR 401</u>	Computer Simulation in Astronomy	
<u>MATH 214</u>	Elementary Differential Equations	
Intermediate Lab	poratory	6
<u>PHYS 311</u>	Instrumentation	
<u>PHYS 312</u>	Waves and Optics	
Research, Intern	ship, or Independent Study	3
Select 3 credits f	rom the following:	
<u>ASTR 405</u>	Honors Thesis in Astronomy I	
<u>ASTR 406</u>	Honors Thesis in Astronomy II	
<u>ASTR 408</u>	Senior Research	
<u>ASTR 409</u>	Astronomy Internship	
<u>PHYS 326</u>	Problems in Physics II	
<u>PHYS 405</u>	Honors Thesis in Physics I	
<u>PHYS 406</u>	Honors Thesis in Physics II	
<u>PHYS 408</u>	Senior Research	
<u>PHYS 409</u>	Physics Internship	
Capstone		4
Select 4 credits f	rom the following:	
<u>ASTR 402</u>	RS: Methods of Observational Astronomy <u>(Mason Core)</u> 1	
<u>PHYS 407</u>	Senior Laboratory in Modern Physics <u>(Mason Core)</u> 1	
<u>PHYS 410</u>	Computational Physics Capstone <u>(Mason Core)</u> 1	
Physics and Astro	onomy Theory	12-18
Students who	are not completing a second major must complete the following:	
<u>ASTR 210</u>	Introduction to Astrophysics	
<u>ASTR 328</u>	Stars	
Select 2 courses	from the following:	

28-34

	<u>ASTR 403</u>	Planetary Science
	<u>ASTR 404</u>	Galaxies and Cosmology
	<u>ASTR 420</u>	Exoplanets
	<u>ASTR 480</u>	The Interstellar Medium
	<u>PHYS 306</u>	Wave Motion and Electromagnetic Radiation
	<u>PHYS 428</u>	Relativity
	Students who ar	re completing a second major must complete the following:
	<u>ASTR 210</u>	Introduction to Astrophysics
	<u>ASTR 328</u>	Stars
	Additionally, sel	ect 3 credits from the following:
	<u>PHYS 306</u>	Wave Motion and Electromagnetic Radiation
	<u>PHYS 428</u>	Relativity
	Lastly, select 3 c	redits from the following:
	<u>ASTR 403</u>	Planetary Science
	<u>ASTR 404</u>	Galaxies and Cosmology
	<u>ASTR 420</u>	Exoplanets
	<u>ASTR 480</u>	The Interstellar Medium
То	tal Credits	

1 Fulfills the writing intensive requirement.

Computational Physics Concentration (PHCP)

Mathematics/Computational Physics Intermediate Methods of Experimental Physics **PHYS 325** MATH 203 Linear Algebra **MATH 214 Elementary Differential Equations** Additionally, select 6 credits from the following: **Computer Simulation in Astronomy** ASTR 401 Scientific Data and Databases CDS 302 CDS 303 Scientific Data Mining MATH 446 Numerical Analysis I MATH 447 Numerical Analysis II Intermediate Laboratory **PHYS 311** Instrumentation Research, Internship, or Independent Study Select 3 credits from the following: **PHYS 326** Problems in Physics II <u>PHYS 405</u> Honors Thesis in Physics I Honors Thesis in Physics II <u>PHYS 406</u> PHYS 408 Senior Research PHYS 409 **Physics Internship**

15

3

3

31-37

Capstone		4
<u>PHYS 410</u>	Computational Physics Capstone <u>(Mason Core)</u> 1	
Physics and Astronomy Theory		3-9
Students who are not completing a second major must select 9 credits of the following. Students who are		
completing a second major must select 3 credits from the following:		
<u>ASTR 210</u>	Introduction to Astrophysics	
<u>ASTR 328</u>	Stars	
<u>ASTR 403</u>	Planetary Science	
<u>PHYS 306</u>	Wave Motion and Electromagnetic Radiation	
<u>PHYS 412</u>	Solid State Physics and Applications	
Total Credits		28-
		34

1 Fulfills the writing intensive requirement.

Retroactive	
Requirements	
Updates:	
Plan of Study:	

Honors Information:

Honors in the Major

Physics majors who have maintained an overall GPA of at least 3.50 in physics courses and a GPA of 3.50 in all courses taken at George Mason University may apply to the physics honors program when they complete the first semester of their junior year.

To graduate with honors in physics, a student is required to maintain a minimum GPA of 3.00 in physics courses and successfully complete <u>PHYS 405</u> Honors Thesis in Physics I and <u>PHYS 406</u> Honors Thesis in Physics II with a GPA of at least 3.50 and a grade of at least 'A-' in <u>PHYS 406</u> Honors Thesis in Physics II. Please visit the department for details.

Additional Program Information

This information is required by the Office of Accreditation and Program Integrity.

Courses offered via distance (if applicable):

What is theFace-to-Face Onlyprimary deliveryFormat for theprogram?Face-to-Face Only

Does any portion of this program occur off-campus?

Are you working with a vendor / other collaborators to offer your program? No Related Departments Could this program prepare students for any type of professional licensure, in Virginia or elsewhere? No Are you adding or removing a licensure component?

Additional SCHEV & SACSCOC Information

Are you changing the total number of credits required for this program?

No

Are you changing the delivery format in any way (e.g adding an online option)?

No

Are you adding/removing a licensure option which was approved by SCHEV?

No

Will any portion of this program be offered at an off-campus location?

No

Are you adding significant new content areas to the program?

No

Will this program change affect any specialized accreditation?

No

Green Leaf Program Designation

Is this a Green Leaf No program?

Does this program cover material which crosses into another department?

Additional Attachments

SCHEV Proposal

Executive Summary

Adjust concentrations to accommodate recently approved new and modified courses. Also, add footnote indicators as needed.

Reviewer Comments

Additional Comments

Is this course required of all students in this degree program?

%wi_required.eschtml%

Key: 564