Faculty Profile: Estela Blaisten-Barojas

Estela Blaisten-Barojas

Estela Blaisten-Barojas

Professor of Computational Science and Physics
Director, Center for Simulation and Modeling (formerly Computational Materials Science Center)

Primary Research: Modeling and Simulation of Nanostructures and Soft Materials

Office: Research Hall 221, MSN 6A12 

Phone: 703-993-1988
Primary Website: http://www.cmasc.gmu.edu

Research Interests

My research focuses on the organization of the microscopic interactions between atoms and molecules in condensed phases of materials including biomaterials. This research involves large scale dynamical simulations of systems in condensed phases, computational statistical mechanics algorithms, physics of elemental and molecular clusters, development of model potentials and molecular dynamics modeling, applications of quantum chemistry to nanoscience, and machine learning discovery in solid state and soft materials including biomaterials.

Current projects with the participation of graduate and undergraduate students:

  • thermodynamics and structure discovery of a family of copolymers that self-assemble forming nanoparticles and that are prone to adhere drops of other polymers by wetting
  • determination of metallic alloys glass behavior based on machine learning analysis of topological properties
  • de novo approach to investigate the multi-conformational connectivity of polymers in the condensed phase
  • correlation between the porous network and energetics of zeolites with cubic space group crystallographic structure

Teaching Interests

    • CSI 780 Principles of Modeling and Simulation in Science (offered yearly in Fall semesters)
    • CSI 786 Molecular Dynamics Modeling (offered in Spring semesters: 2015, 2017, 2019, 2020)
    • CSI 782 Statistical Mechanics for Modeling and Simulation (offered in Fall semesters every alternative year: 2015, 2017, 2020)
    • CSI 783/PHYS 736/CHEM 736 Computational Quantum Mechanics (offered in Spring semesters every alternative year: 2016, 2018, 2020)
    • CSI 986 Topics in HPC Modeling and Simulation (offered intermittently)

Press releases: Mason Research, March 2012; 4-VA Advancing the Commonwealth, Dec. 2019.

Dr. Estela Blaisten-Barojas received her B. S. in Physics from the Universidad Nacional de Tucumán, Argentina, and her M.S. and Ph.D. in Theoretical Molecular Physics from the Université Pierre et Marie Curie, France (former Paris VI). Prior to joining George Mason University in 1992, Dr. Blaisten-Barojas was with the Universidad Nacional Autónoma de Mexico, Mexico (1975–1991) and the Johns Hopkins University (1990–1992). She spent her first sabbatical at Stanford University (1981-82). Her second sabbatical was at the National Institute of Standards and Technology (1989-90). She served as Program Director at the National Science Foundation within the Theory, Models, and Computational Methods program of the Division of Chemistry (2009 – 2010).

Dr. Blaisten-Barojas was the recipient of a Fulbrtight senior award, is a Fellow of the American Physical Society, and member of the Academia Mexicana de Ciencias. She has received more than $3 million in external research funding. Her work has been supported by grants and contracts from NSF, NIST, ONR, ARL, NRL, the Jeffress Memorial Trust, and others. Along her research at Mason, she has been the dissertation director of 16 doctoral and 6 master students in the Computational Sciences and Informatics PhD and the Computational Science and the Physics masters.

Dr. Blaisten-Barojas is member of the Editorial Board of the Journal of Computational and Theoretical Nanoscience,

Curriculum Vitae (2-page format)

Most recent papers in referred journals:

118. R. Handler,  E. Blaisten-Barojas, P. M. Ligrani, P. Dong, M. Paige “Vortex Generation in a Finitely Extensible Nonlinear Elastic Peterlin Fluid Initially at Rest,” Engineering Reports, in press (2020).

117. J. Andrews and E. Blaisten-Barojas, “Exploring with Molecular Dynamics the Structural Fate of PLGA Oligomers in Various Solvents,” J. Phys. Chem B 123, 48, 10233-10244 (PDF)

116. G. Gogovi, F. Almsned, N. Bracci, K. Kehn-Hall, A. Shehu and E. Blaisten-Barojas, “Modeling the Tertiary Structure of the Rift Valley Fever Virus L protein,” Molecules 24, 1768 (2019); doi:10.3390/molecules24091768 (PDF)

115. D. Reitz and E. Blaisten-Barojas, “Simulating the NaK eutectic alloy with Monte Carlo and Machine Learning,” Scientific Reports 9, Article number: 704 (2019) | doi:10.1038/s41598-018-36574-y (PDF)

114. F. Almsned, G. Gogovi, N. Ricci, K. Kehn-Hall, E. Blaisten-Barojas, and A. Shehu, “Modeling the Tertiary Structure of a Multi-domain Protein,” The 2018 Computational Structural Bioinformatics Workshop ACM-BCB’18, August 29-September 1, Washington, DC, USA, pp 615-620 (2018). (PDF)

113. S. Ozkaya and E. Blaisten-Barojas, “Polypyrrole on graphene: A density functional theory study,” Surface Science 674, 1-5 (2018). (PDF)

112. D. Reitz and E. Blaisten-Barojas, “Monte Carlo study of the crystalline and amorphous NaK alloy,” Procedia Computer Science 108C, 1215-1221 (2017). (PDF)

111. D. Sponseller and E. Blaisten-Barojas, “Failure of logarithmic oscillators to serve as a thermostat for small atomic clusters,” Physical Review E 89, 021301(R) (2014). (PDF)

110. C. Hall, W. Ji, and E. Blaisten-Barojas, “The Metropolis Monte Carlo method with CUDA enabled Graphic Processing Units,” J. Computational Physics 258, 871-879 (2014). (PDF)

109. Y. Dai, Ch. Wei, and E. Blaisten-Barojas, “Density functional theory study of neutral and oxidized thiophene oligomers,” J. Chem. Phys. 139, 184905 (2013). (PDF)

108. Q. Xing and E. Blaisten-Barojas, “A Cloud Computing System in Windows Azure Platform,” Concurrency and Computation: Practice & Experience, 25, 2157-2169 (2012). (PDF)

107. Y. Dai, Ch. Wei, and E. Blaisten-Barojas, “Bipolarons and polaron pairs in oligopyrrole dications,” Computational and Theoretical Chemistry 993, 7-12 (2012). (PDF)

106. R. Massaro and E. Blaisten-Barojas,”Theoretical investigation of the photophysics of methyl salicylate isomers.” J. Chem. Phys. 135, 164306 (2011). (PDF)

105. R. Massaro and E. Blaisten-Barojas, “Density Functional Theory Study of Dipicolinic Acid Isomers and Crystalline Polytypes.” Computational and Theoretical Chemistry 977, 148-156 (2011). (PDF)

104. J. Lyver and E. Blaisten-Barojas, “Lattice Thermal Conductivity in SiC Nanotubes, Nanowires and Nanofilaments: a Molecular Dynamics Study,” J. of Computational and Theoretical Nanoscience 8, 529-534 (2011). (PDF)

103. Y. Dai, S. Chowdhuri, E. Blaisten-Barojas, “Density functional theory study of the structure and energetics of negatively charged oligopyrroles,” Int. J. Quantum Chem. 111, 2295-2305 (2011). (PDF)

102. Y. Dai and E. Blaisten-Barojas,”Monte Carlo Study of Oligopyrroles in Condensed Phases,” J. Chem. Phys. 133, 034905 (2010). (PDF)

101. M. Lach-hab, S. Yang, I. I. Vaisman, E. Blaisten-Barojas, X. Li, V. L. Karen, “Framework Type Determination for Zeolite Structures in the Inorganic Crystal Structure Database,” J. Phys. Chem. Reference Data 39, 033102 (2010). (PDF)

100. M. Lach-hab, S. Yang, I. I. Vaisman, E. Blaisten-Barojas, “Novel Approach for Clustering Zeolite Crystal Structures.” Molecular Informatics 29, 297-301 (2010). (PDF)

99. S. Yang, M. Lach-hab, E. Blaisten-Barojas, X. Li, V. L. Karen, “Machine Learning Study of the Heulandite Family of Zeolites,” Microporous and Mesoporous Materials 130, 309-313 (2010). (PDF)

98. Yang, S.; Lach-hab, M.; Vaisman, I. I.; Blaisten-Barojas, E., “Identifying Zeolite Frameworks with a Machine Learning Approach,” J. Phys. Chem. C, 113, pp 21721-21725 (2009) (PDF)

97. R. Massaro, Y. Dai and E. Blaisten-Barojas, “Energetics and Vibrational Analysis of Methyl Salicylate Isomers,” J. Phys. Chem. A 113, 10385-10390 (2009) (PDF)

96. J. Lyver, IV and E. Blaisten-Barojas, “Effects of the interface between two Lennard-Jones crystals on the lattice vibrations: a molecular dynamics study,” J. Phys.: Condensed Matter, 29, 345402 (2009) (PDF)

95. A. Patrick, X. Dong, T. Allison, and E. Blaisten-Barojas, “Silicon Carbide Nanostructures: a Tight Binding Approach,” in vjnano.org 20, issue 1, 2009 (PDF)

94. A. Patrick, X. Dong, T. Allison, and E. Blaisten-Barojas, “SILICON CARBIDE NANOSTRUCTURES: A TIGHT BINDING APPROACH,”span> J. Chem. Phys. 130, 244704 (2009). (PDF)

93. M. Lach-hab, S. Yang, I. Vaisman and E. Blaisten-Barojas, “Assignment of Framework Types to the Zeolite Crystals in the Inorganic Crystal Structure Database,” arXiv:0904.2597 (April 2009).(PDF)

92. Yang, S.; Lach-hab, M.; Vaisman, I. I.; Blaisten-Barojas, E., “Machine learning identification of zeolite framework types,” In the 2009 International Conference on Artificial Intelligence (ICAI), CSREA, Las Vegas, NV, 2009, 340-344. (PDF)

91. Yang, S.; Lach-hab, M.; Vaisman, I. I.; Blaisten-Barojas, E., “A cheminformatics approach for zeolite framework determination,” Lecture Notes in Computer Science (LNCS) 5545 (2009) 160-168. (PDF)

90. Yang, S.; Lach-hab, M.; Vaisman, I. I.; Blaisten-Barojas, E., “Machine Learning Approach for Classification of Zeolite Crystals,” In Proceedings of the 2008 International Conference on Data Mining, CSREA: Las Vegas, NV, 2008, 702-706. (PDF)

89.D. A. Carr, M. Lach-hab, S. Yang, I. I. Vaisman, and E. Blaisten-Barojas, “Machine learning approach for structure-based zeolite classification,” Microporous and Mesoporous Materials 117, 339-349 (2009). (PDF)

88. Y. Dai and E. Blaisten-Barojas, “Energetics, structure, and charge distribution of reduced and oxidized n-pyrrole oligomers: A density functional approach,” J. Chem. Phys. 129, 164903 (2008). (PDF)

87. Y. Dai and E. Blaisten-Barojas, =”Energetics, structure, and electron detachment spectra of calcium and zinc neutral and anion clusters: a density functional theory study,” J. Phys. Chem. A 112, 11052-60 (2008). (PDF)

86. X. Dong and E. Blaisten-Barojas, “Structural optimization of nanoclusters with adaptive tempering Monte Carlo method,” 2006 NSTI Nanotechnology Conference and Trade Show – NSTI Nanotech 2006 Technical Proceedings, vol. 1, 629-632 (2007).

85. A. D. Patrick, P. Williams, and E. Blaisten-Barojas. “Energetics and Bonding in Beryllium Metallized Carbon Clusters,” J. of Molecular Structure: THEOCHEM 824, 39-47 (2007). (PDF)

84. A. D. Patrick, A. Skene, and E. Blaisten-Barojas, “Energetics and Bonding in Small Lithiated Carbon Clusters,” J. of Molecular Structure: THEOCHEM 807, 163-172 (2007). (PDF)

83. S. Gatica, X. Dong, and E. Blaisten-Barojas, “Study of Solid-liquid Phase Changes of Lennard-Jones Nanoclusters by NPT Monte Carlo Simulations,” J. of Comp. and Theoretical Nanoscience 4, 529-534 (2007). (PDF)

82. X. Dong, D. Klimov, and E. Blaisten-Barojas, “Protein Folding with the Adaptive Tempering Monte Carlo Method,” Molecular Simulation 33, 577-582 (2007). (PDF)

81. J. Lyver and E. Blaisten-Barojas, “Computational Study of Heat Transport in Compositionally Disordered Binary Crystals,” Acta Materialia 54, 4633-4639 (2006). (PDF)

80. X. Dong and E. Blaisten-Barojas, “Adaptive Tempering Monte Carlo Method,” J. Computational & Theoretical Nanoscience 3, 118-127 (2006). (PDF)

79. X. Dong, S. Gatica, and E. Blaisten-Barojas, “Tight-Binding Calcium Clusters from Adaptive Tempering Monte Carlo Simulation,” Computing Letters 1, 152-157 (2005). (PDF)

78. X. Dong, G. M. Wang, and E. Blaisten-Barojas, “Tight-Binding Model for Calcium Nanoclusters: Structural, Electronic and Dynamical Properties,” Phys. Rev. B 70, 205409 (2004). (PDF)

77. E. Blaisten-Barojas, C. H. Chien, M. R. Pederson, and J. Mirick, “Fission of Doubly Ionized Calcium Clusters,” Chem. Phys. Lett. 395, 109-113 (2004). (PDF)

76. G. M. Wang, D. A. Papaconstantopoulos, and E. Blaisten-Barojas,”Pressure Induced Transitions in Calcium; a Tight-binding Approach,”, J. Phys. and Chem. of Solids 64, 185-192 (2003). (PDF)

75. G. M. Wang, E. Blaisten-Barojas, A. E. Roitberg, and T. P. Martin, “Strontium Clusters: Many-Body Potential, Energetics and Structural Transitions,”, J. Chem. Phys. 115, 3640-46 (2001). (PDF)

74. J. Mirick, C. H. Chien, and E. Blaisten-Barojas, “Electronic Structure of Calcium Clusters,” Phys. Rev. A 63, 023202 (2001). (PDF)

73. A. AlSunaidi, M. Lach-hab, E. Blaisten-Barojas, and A. Gonzalez, “Colloidal Aggregation with Mobile Impurities,” Phys. Rev. E 61, 6781 (2000). (PDF)

72. C. H. Chien, E. Blaisten-Barojas, and M. R. Pederson, “Many-body Potential and Structure for Rhodium Clusters,” J. Chem. Phys. 112, 2301 (2000). (PDF)

71. A. AlSunaidi, M. Lach-hab, A. Gonzalez, and E. Blaisten-Barojas, “Cluster-Cluster Aggregation in Binary Mixtures,” Phys. Rev. E 61, 550 (2000). (PDF)

70. A. Gonzalez, M. Lach-hab, and E. Blaisten-Barojas, “On the Concentration Dependence of the Cluster Fractal Dimension in Colloidal Aggregation,” Journal of Sol-Gel Science and Technology 15, 119 (1999). (PDF)

69. C. H. Chien, E. Blaisten-Barojas, and M. R. Pederson, “Magnetic and Electronic Properties of Rhodium Clusters,” Phys. Rev. A 58, 2196 (1998). (PDF)

68. M. Lach-hab, A. Gonzalez, E. Blaisten-Barojas, “Structure Function and Fractal Dimension of Diffusion Limited Colloidal Aggregates”, Phys. Rev. E 57, 4520 (1998). (PDF)

67. Y. Li, E. Blaisten-Barojas, and D. A. Papaconstantopoulos, “Structure and Dynamics of Alkali Metal Clusters and Fission of Highly Charged Clusters,” Phys Rev. B 57, 15519 (1998). (PDF)

66. Y. Li and E. Blaisten-Barojas, “Molecular Dynamics Study of Neutral and Multiply Charged Sodium Chref=”http://www.cmasc.gmu.edu/publications_blaisten/66.pdf”>(PDF)

65. Y. Li and E. Blaisten-Barojas, “Nonlinear Coupling Between Rotation and Internal Vibration in Simple Molecular Systems”, J. of Physics B. 30, 309 (1997). (PDF)

64. M. Lach-hab, E. Blaisten-Barojas, and T. Sauer, “Irregular Scattering of Particles Confined to Ring-Bounded Cavities”, J. of Statistical Physics 87, 137 (1997). (PDF)

63. M. Lach-hab, A. Gonzalez, E. Blaisten-Barojas, “Concentration Dependence of Structural and Dynamical Quantities in Colloidal Aggregation: Computer Simulations”, Phys. Rev. E. 54, 5456 (1996). (PDF)

62. M.R. Zachariah, M. Carrier, and E. Blaisten-Barojas, “Molecular Dynamics Calculation of Properties of Silicon Nanoparticles”, J. Phys. Chem. 100, 14856 (1996). (PDF)

Older papers in refereed journals:

1. E. Blaisten, U. Schegg, “Determinacion por Metodos Espectroscopicos del Calor Especifico y de la Entropia del CN”, Notas de Fisica 1, 1 (1968).

2. V. Beltran Lopez, E. Ley-Koo, N. Segovia, E. Blaisten, “Calculation of the Magnetic Moment of Atomic Fluorine,” Physical Review 172, 44 (1968). (PDF)

3. E. Blaisten, V. Beltran-Lopez, E. Ley-Koo, N. Segovia, “Calculo de los Momentos Magneticos del Boro, Carbon y Nitrogeno Atomicos”, Revista Mexicana de Fisica 17, 99 (1968).

4. V. Beltran-Lopez, E. Blaisten, N. Segovia, E. Ley-Koo, “Calculation of the Magnetic Moment of Atomic Oxygen,” Physical Review 177, 432 (1969). (PDF)

5. E. Blaisten-Barojas, M. Allavena, “An Application of Green’s Functions to the Study of the Vibration Translation Coupling of Trapped Oscillators in a Linear Chain,” International Journal of Quantum Chemistry 7, 195 (1973). (PDF)

6. Estela Blaisten-Barojas, “Effect de Couplage Molecule-Reseau sur le Spectre d’Absortion I.R. d’une Molecule Piege dans une Matrice: Modele a Une Dimension”, Editorial: Universite de Paris VI, France, No. d’enregistrement au C.N.R.S.: A.O. 10.011, pag. 1-176 (1974).

7. E. Blaisten-Barojas, M. Allavena, “Calcul du Coefficient d’Absorption I.R. d’une Molecule Diatomique Piege dans une Matrice de Gaz Rare,” Journal de Chimie Physique 72, 409 (1975). (PDF)

8. E. Blaisten-Barojas, M. Allavena, “I.R. Absorption Spectrum of Molecules Trapped in Matrices I: Libron-Phonon Coupling in 1-D,” Journal of Physics C 9, 3121 (1976). (PDF)

9. E. Blaisten-Barojas, O, Novaro, O. Sinanoglu, “Solvent Effects of Liquid Helium on He2,” Molecular Physics 31, 1941 (1976). (PDF)

10. J. Barojas, E. Cota, E. Blaisten-Barojas, J. Flores, P. Mello, “Studies on the Problem of Small Metallic Particles: I-Spectrum Fluctuations in a Two-Dimensional Model and the Associated Specific Heat,” Annals of Physics 107, 95 (1977). (PDF)

11. J. Barojas, E. Cota, E. Blaisten-Barojas, J. Flores, P. Mello, “On the Statistical Properties of the Electronic Levels of Small Metallic Particles,” Journal de Physique 38, C2-129 (1977). (PDF)

12. E. Blaisten-Barojas, J. Flores, P. Mello, J. Barojas, E. Cota, “Dependence of the Specific Heat on the Spectrum Fluctuations,” Physics Letters A 61, 146 (1977). (PDF)

13. L. Bruch, E. Blaisten-Barojas, O. Novaro, “On the Role of Three-Body Interactions in Trimer Binding,” Journal of Chemical Physics 67, 4701 (1977). (PDF)

14. O. Novaro, E. Blaisten-Barojas, E. Clementi, G. Giunchi, M.E. Ruiz, “Theoretical Study on a Reaction Pathway of Ziegler-Natta Catalysis,” Journal of Chemical Physics 68, 2337 (1978). (PDF)

15. J. Barojas, E. Blaisten-Barojas, J. Flores, “Two Examples of Electronic Spectrum Fluctuations in Microparticles,” Physics Letters A 69, 142 (1978). (PDF)

16. E. Blaisten-Barojas, O. Novaro, L. Bruch, “Non-additive Interactions in Liquid Helium Solvent Effects,” Molecular Physics 37, 599 (1979). (PDF)

17. J. Pineda, O. Novaro, J.P. Daudey, E. Blaisten-Barojas, “Ab-initio Molecular Orbital Study of the Catalytic Exchange Reaction Between Hydrogen and Sodium Amide,” Journal of Chemical Physics 71, 5124 (1979). (PDF)

18. J. Barojas, E. Blaisten-Barojas, J. Flores, E. Cota, “Electronic Spectrum Fluctuations in Small Particles,” KINAM 1, 361 (1979). (PDF)

19. J. Barojas, E. Blaisten-Barojas, J. Flores, “Strong-Coupling Superconductivity in Small Particles,” KINAM 2, 71 (1980). (PDF)

20. S. Fujita, E. Blaisten-Barojas, S. Godoy, “The Helix-coil Transition Based on Correlated Walks,” Ferroelectrics 30, 299-304 (1980). (PDF)

21. Y. Okamura, E. Blaisten-Barojas, S. Fujita, S.V. Godoy, “Theory of Atomic Diffusion in Cubic Crystals with Impurities Based on the Correlated-Walks,”Physical Review B 22, 1638 (1980). (PDF)

22. S. Fujita, Y. Okamura, E. Blaisten, S.V. Godoy, “The Dynamics of a Lorentz Gas as Described by Correlated Walks,” Journal of Chemical Physics 73, 4569 (1980). (PDF)

23. S. Fujita, Y. Okamura, L.S. Garcia Colin, S.V. Godoy and E. Blaisten-Barojas, “Correlated Walks and Ising Problems,” KINAM 2A, 193 (1980).

24. S. Fujita, E. Blaisten-Barojas, M. Torres, S. Godoy, “Helix Coil Transition of Polypeptides,” Journal of Chemical Physics 75, 3097 (1981). (PDF)

25. M. Allavena, E. Blaisten-Barojas, B. Silvi, “LCAO-MO-SCF Calculation of the Metal-Oxygen Bonding in the M2O2 Series: M = Li,Na,K,” Journal of Chemical Physics 75, 787 (1981). (PDF)

26. Y. Okamura, M. Torres, E. Blaisten-Barojas, S. Fujita, “On the Correlated Walks with Reflecting Walls,” Acta Physica Austriaca 53, 203 (1981). (PDF)

27. Y. Okamura, E. Blaisten-Barojas, S. Fujita, S.V. Godoy, S. Ulloa, “Study of the Correlated Walks with Reflecting Walls,” Journal of Chemical Physics 76, 601 (1982). (PDF)

28. E. Blaisten-Barojas, S. Mascarenhas, “A Correlated Walk Model for Thermally Stimulated Depolarization Currents in alpha-Keratin,” Journal of Chemical Physics 76, 5643 (1982). (PDF)

29. E. Blaisten-Barojas, “Structural Effects of Three-Body Interactions on Atomic Microclusters,” KINAM, 6A, 71 (1984). (PDF)

30. G. Bravo, E. Blaisten-Barojas, “Electronic Structure and Vibrational Analysis of the Alkali Peroxides K2O2,” Chemical Physics Letters 108, 237 (1984). (PDF)

31. E. Blaisten-Barojas, H.C. Andersen, “Effects of Three-Body Interactions on the Structure of Clusters,” Surface Science 156, 548 (1985). (PDF)

32. I. Garzon, E. Blaisten-Barojas, S. Fujita, “The Libron-Phonon Coupling and the IR Absorption Spectra of Diatomics in Simple Liquid Solutions,” Journal of Chemical Physics 82, 1772 (1985). (PDF)

33. S. Fujita, M. Greb and E. Blaisten-Barojas, “Lattice-Kinetic Theory of the Self-Diffusion Coefficient for Simple Liquids,” Acta Physica Austriaca 57, 221 (1985). (PDF)

34. I. Garzon, E. Blaisten-Barojas, “Libron-Phonon Coupling Effect on the IR Absorption Spectra of Diatomics Trapped in Matrices,” Journal of Chemical Physics 83, 4311 (1985). (PDF)

35. I. Garzon, E. Blaisten-Barojas, “Effect of Three-Body Interactions on the Early Stages of Atomic Growth,” Chemical Physics Letters 124, 84 (1986). (PDF)

36. E. Blaisten-Barojas, L. Martinez, “A Correlated Walk Model of Diffusion in Binary Solid Solutions,” Acta sud Americana de Quimica 6, 1 (1986). (PDF)

37. E. Blaisten-Barojas, D. Levesque, “Molecular Dynamics Simulation of Silicon Clusters,” Phys. Rev. B, 34, 3910 (1986). (PDF)

38. I. L. Garzon, M. Avalos, E. Blaisten-Barojas, “Structure and Melting of Argon Clusters on a Substrate”, NATO ASI Series B, Plenum Press, New York (1987), p. 193.

39. E. Blaisten-Barojas, D. Levesque, “A Molecular Dynamic Study of Silicon Cluster,” NATO ASI Series B, Plenum Press, New York (1987), p. 157.

40. E. Blaisten-Barojas, I. L. Garzon, M. Avalos-Borja, “Structural and Dynamical Properties of Clusters on a Substrate,” in “Large Finite Systems”, Edts: J. Jortner,A. Pullman, B. Pullman, The Jerusalem Symposia on Quantum Chemistry and Biochemistry, Vol. 20, D. Reidel Pub., Boston (1987),p. 241.

41. E. Blaisten-Barojas, I. L. Garzon, M. Avalos-Borja, “Melting and Freezing of Lennard-Jones Clusters on a Surface,” Phys. Rev. B, 36, 8447 (1987). (PDF)

42. E. Blaisten-Barojas, “Computer Simulation of Clusters”, in “Elemental and Molecular Clusters”, Springer Series in Materials Science, Vol. 6, Springer-Verlag, Berlin, (1988), p. 106.

43. E. Blaisten-Barojas and S. N. Khanna, “Development of a First-Principles Many-Body Potential for Beryllium,” Phys. Rev. Lett. 61, 1477 (1988). (PDF)

44. B. Rao and E. Blaisten-Barojas, “New Potential for Si2+,” Chemical Physics Letters, 150,259 (1988). (PDF)

45. I. Garzon,M. Avalos-Borja, E. Blaisten-Barojas,”More on the Melting of Lennard-Jones Clusters,” Z. fur Physik D, 12, 181 (1989). (PDF)

46. I. L. Garzon, M. Avalos-Borja, and E. Blaisten-Barojas, “A Phenomenological Model of Melting in Lennard-Jones Clusters,” Phys. Rev. B, 40, 4749 (1989). (PDF)

47 E. Blaisten-Barojas, S. N. Khanna, “Model Potential for Beryllium Clusters,” Z. fur Physik D, 12, 77 (1989). (PDF)

48 I. L. Garzon and E. Blaisten-Barojas, “On the Melting of Lennard Jones Small Clusters,” in “Small Particles and Inorganic Clusters.” Eds C. Chapon, M.F. Gillet, and C. R. Henry, Springer-Verlag, Berlin, 1989, pp 77-79 & 181-184.

49. E. Blaisten-Barojas, “Correlated Walk Model of the Melting Transition in Small Clusters,” J. Chem. Soc. Faraday Trans., 86, 2351 (1990). (PDF)

50. E. Blaisten-Barojas,”Discussion on Correlated Walk Models,” J. Chem. Soc. Faraday Trans., 86, 2387 (1990).

51. E. Blaisten-Barojas and M. Nyden, “Molecular Dynamics Study of the Depolymerization Reaction in Simple Polymers,” Chem. Phys. Lett. 171, 499 (1990). (PDF)

52. E. Blaisten-Barojas, “High Temperature Molecular Dynamics Studies of Cluster Growth and Polymer Degradation,” in “Cluster Models for Surface and Bulk Phenomena”, NATO ASI Series B, Vol. 283,.Plenum Press, (1992 ),p. 29.

53. E. Blaisten-Barojas and M.R. Zachariah, “Molecular Dynamics Study of Cluster Growth by Cluster-Cluster Collisions”, Phys. Rev. B, 45, 4403 (1992). (PDF)

54. E. Blaisten-Barojas and J. W. Gadzuk, “The Vibrational Lineshape of Diatomic Adsorbates on Metal Clusters: Metal/Non-metal Transition,” J. Chem. Phys., 97, 862 (1992). (PDF)

55. E. Blaisten-Barojas, Molecular Dynamics Study of Cluster Growth and Polymer Degradation,” Int. J. of Modern Phys. B, 6, 3643-3655 (1992) (DOI No: 10.1142/S0217979292001705). (PDF)

56. M.R. Zachariah, M. Carrier, and E. Blaisten-Barojas, “Molecular Dynamics Simulation of Large Cluster Growth,” in “Gas-Phase and Surface Chemistry in Electronic Materials Processing”, MRS Vol. 334, 1993, p.75-80 (DOI:10.1557/PROC-334-75). (PDF)

57. E. Blaisten-Barojas, “Molecular Dynamics Study of Cluster Growth and Polymer Degradation,” in “Clusters and Fullerenes”, Editors: V. Kumar, T. P. Martin, E. Tosatti, World Scientific Pub., New Jersey (1993), p.59.

58. M.R. Zachariah, M. Carrier, and E. Blaisten-Barojas, “Atomistic Simulation of Vapor-Phase Nanoparticle Formation,” in “Molecularly Designed Ultrafine, Nanostrucural Materials”, MRS Volume 351, 1994, p. 343-348 (DOI: 10.1557/PROC-351-343). (PDF)

59. E. Blaisten-Barojas, Y. Li, and A Belenki, “On the Fission of Metallic Clusters,” MRS Vol. 366, 1995, p. 341-346 (DOI:10.1557/PROC-366-341). (PDF)

60. E. Blaisten-Barojas, L. Liu, and M.R. Zachariah, “Dynamics of Nanometer SiO2 Particles and their Coalescence Characteristics”, MRS Vol. 366, 1995, p. 173-178 (DOI: 10.1557/PROC-366-173). (PDF)

61. E. Blaisten-Barojas, L. Liu, and M.R. Zachariah, “Molecular Dynamics Study of Growth and Coalescence of Nanometer Particles at High Temperatures”, Simulation Multiconference, in High Performance Computing 1995 “Grand Challenges in Computer Simulation”, ed. A. Tentner, SCS 1995,p. 228. (PDF)

Publications on Education:

1. M. Berrondo, E. Blaisten-Barojas,”La Fisica Molecular”, 1978 Suplement issue, 116 (1978).

2. R. Jauregi, E. Blaisten-Barojas,”La Mujer en la Fisica de Mexico”,Contactos,III,81(1988).

Go to the main People page.