Calendar
During the fall 2018 semester, the Computational Social Science (CSS) and the Computational Sciences and Informatics (CSI) Programs have merged their seminar/colloquium series where students, faculty and guest speakers present their latest research. These seminars are free and are open to the public. This series takes place on Fridays from 3-4:30 in Center for Social Complexity Suite which is located on the third floor of Research Hall.
If you would like to join the seminar mailing list please email Karen Underwood.
Computational Social Science Research Colloquium /
Colloquium in Computational and Data Sciences
J. Brent Williams
Founder and CEO
Euclidian Trust
Improved Entity Resolution as a Foundation for Model Precision
Friday, November 2, 3:00 p.m.
Center for Social Complexity, 3rd Floor Research Hall
All are welcome to attend.
Abstract: Analyzing behavior, identifying and classifying micro-differentiations, and predicting outcomes relies on the establishment of a core foundation of reliable and complete data linking. Whether data about individuals, families, companies, or markets, acquiring data from orthogonal sources results in significant matching challenges. These matching challenges are difficult because attempts to eliminate (or minimize) false positives yields an increase in false negatives. The converse is true also.
This discussion will focus on the business challenges in matching data and the primary and compounded impact on subsequent outcome analysis. Through practical experience, the speaker led the development and first commercialization of novel approach to “referential matching”. This approach leads to a more comprehensive unit data model (patient, customer, company, etc.), which enables greater computational resolution and model accuracy by hyper-accurate linking, disambiguation, and detection of obfuscation. The discussion also covers the impact of enumeration strategies, data obfuscation/hashing, and natural changes in unit data models over time.
Computational Social Science Research Colloquium /
Colloquium in Computational and Data Sciences
William Lamberti, CSI PhD Student
Department of Computational and Data Sciences
George Mason University
Classifying Pill Spies Using Storks
Friday, November 9, 3:00 p.m.
Center for Social Complexity, 3rd Floor Research Hall
All are welcome to attend.
Abstract: Simple and intuitive measures of shape are substantial challenges in image analysis and computer vision. While measures of shape do exist, there are only a few intuitive and mathematically derived measures for other polygons. In this talk, a measure, which we call shape proportions, for regular polygons and circles are shown. From these proportions, we find the corresponding encircled image-histograms for classification purposes. This method of using shape proportions and encircled image-histograms is called SPEIs (which is pronounced as ‘spy’). An analysis using simulated and actual shape images were compared to ensure its utility. Future work regarding applying SPEIs to NIH pill data using stratified over-representative k-folds cross-validation (abbreviated as STORKC, which is pronounced as ‘stork’) will be discussed.
Computational Social Science Research Colloquium /
Colloquium in Computational and Data Sciences
Swabir Silayi, CSI PhD Candidate
George Mason University
Modeling the Magnetic Spin Spiral of MnAu2 –
Leveraging Data Science in Materials Simulations
Friday, November 16, 3:00 p.m.
Center for Social Complexity Suite, 3rd Floor Research Hall
All are welcome to attend.
Abstract:
Many properties of materials can be traced to the microscopic interactions of their atoms and electrons. These properties and their variety make possible their wide range of applications from chips in smart electronic devices to building construction. Computationally, we can model and study the properties and their macroscopic effects through density functional theory calculations. Advancements in data science have also led to additional improved tools and methods that enhance the modeling and analysis of the materials properties.
In this presentation I will
* review some basic concepts of computational materials science such as density functional theory and materials simulations,
* talk about the general background and trends in spin electronic devices,
* demonstrate the model we are building and show how we use data science to determine simulation parameters and
* explain the MnAu2 system and how its spin angles can be potentially controlled using external pressure for possible application in spin electronic devices.
There will be no Computational Social Science Research Colloquium /Colloquium in Computational and Data Sciences talk on Friday, November 23 due to Thanksgiving break.
Notice and Invitation
Oral Defense of Doctoral Dissertation
Doctor of Philosophy in Computational Sciences and Informatics
Department of Computational and Data Sciences
College of Science
George Mason University
Joseph Shaheen
Bachelor of Science, Murray State University, 2003
Master of Professional Studies, Georgetown University, 2011
Master of Business Administration, Georgetown University, 2013
Data Explorations in Firm Dynamics:
Firm Birth, Life, & Death Through Age, Wage, Size & Labor
Monday, November 26, 2018, 12.30 p.m.
Research Hall
All are invited to attend.
Committee
Robert Axtell, Dissertation Director
Eduardo Lopez
John Shortle
William Rand
Marc Smith
A better understanding of firm birth, life, and death yields a richer picture of firms’ life-cycle and dynamical labor processes. Through “big data” analysis of a collection of universal fundamental distributions and beginning with firm age, wage and size, I discuss stationarity, their functional form, and consequences emanating from their defects. I describe and delineate the potential complications of the firm age defect–caused by the Great Recession—and speculate on a stark future where a single firm may control the U.S. economy. I follow with an analysis of firm sizes, tensions in heavy-tailed model fitting, how firm growth depends on firm size and consequently, the apparent conflict between empirical evidence and Gibrat’s Law. Included is an introduction of the U.S. firm wage distribution. The ever-changing nature of firm dynamical processes played an important role in selecting the conditional distributions of age and size, and wage and size in my analysis. A closer look at these dynamical processes reveals the role played by mode wage and mode size in the dynamical processes of firms and thus in the firm life-cycle. Analysis of firm labor suggests preliminary evidence that the firm labor distribution conforms to scaling properties—that it is power law distributed. Moreover, I report empirical evidence supporting the existence of two separate and distinct labor processes—dubbed labor regimes—a primary and secondary, coupled with a third unknown regime. I hypothesize that this unknown regime must be drawn from the primary labor regime—that it is either emergent from systemic fraudulent activity or subjected to data corruption. The collection of explorations found in this dissertation product provide a fuller, richer picture of firm birth, life, and death through age, wage, size, and labor while supporting our understanding of firm dynamics in many directions.
Notice and Invitation
Oral Defense of Doctoral Dissertation
Doctor of Philosophy in Computational Sciences and Informatics
Department of Computational and Data Sciences
College of Science
George Mason University
Doug Reitz
Bachelor of Science, Pennsylvania State University, 1995
Master of Science, Binghamton University, 2007
Atomistic Monte Carlo Simulation and
Machine Learning Data Analysis of
Eutectic Alkali Metal Alloys
Tuesday, November 27, 2018, 10:00 a.m.
Research Hall, Room 92
All are invited to attend.
Committee
Estela Blaisten-Barojas, Dissertation Director
Igor Griva
Dmitri Klimov
Howard Sheng
Combining atomistic simulations and machine learning techniques can significantly expedite the materials discovery process. Here an application of such methodological combination for the prediction of the configuration phase (liquid, amorphous solid, and crystalline solid), melting transition, and amorphous-solid behavior of three eutectic alkali metal alloys (Na-K, Na-Cs, K-Cs) is presented. It is shown that efficient prediction of these properties is possible via machine learning methods trained on the topological local structural properties alone. The atomic configurations resulting from Monte Carlo annealing of the eutectic alkali alloys are analyzed with topological attributes based on the Voronoi tessellation using expectation-maximization clustering, Random Forest classification, and Support Vector Machine classification. It is shown that the Voronoi topological fingerprints make an accurate and fast prediction of the alloy thermal behavior by cataloging the atomic configurations into three distinct phases: liquid, amorphous solid, and crystalline solid. Using as few as eight topological features the configurations can be categorized into these three phases. With the proposed metrics, arrest-motion and melting temperature ranges are identified through a top down clustering of the atomic configurations cataloged as amorphous solid and liquid.
The methodology presented here is of direct relevance in identifying or screening unknown materials in a targeted class with desired combination of topological properties in an efficient manner with high fidelity. The results demonstrate explicitly the exceptional power of domain-based machine learning in discovering topological influence on thermodynamic properties, and at the same time providing valuable guidance to machine learning workflows for the analysis of other condensed systems. This statistical learning paradigm is not restricted to eutectic alloys or thermodynamics, extends the utility of topological attributes in a significant way, and harnesses the discovery of new material properties.
Computational Social Science Research Colloquium /Colloquium in Computational and Data Sciences
Sanjay Nayar
CSS PhD Student
Title: Interlocking Directorates Analysis: Evidence from India BSE-100
Friday, November 30, 3:00 p.m.
Center for Social Complexity, 3rd Floor Research Hall
All are welcome to attend.
Abstract:
Interlocked directorates among companies are common across the world and have been studied quite extensively in the Western World. This study focuses on interlocking directorates, also referred to as inter-organizational elite cooptation (Allen, 1974), among the top 100 publicly traded companies on the Bombay Stock Exchange (BSE-100) in India. The time period analyzed is between 2006 and 2010, the years spanning the recent great recession. While De (2012) looked at the performance effects of interlocking directorates within Indian business groups irrespective of their membership in BSE-100, it did not address in the analysis the key players, cliques, etc., the evolution of the interlocking over time, or any comparisons with the United States. This broad exploratory study is the first to look at the BSE-100 interlocking directorates’ network to see how it has or has not been dominated by a select group of individuals, companies or sectors during 2006-2010, along with the companies’ performances in the longer-term, given their position in the network. Some comparisons are also made with the US market using information available in published papers (Everard, 2002). This study also serves a secondary purpose of being an introduction to the interconnections between some of the biggest players in the Indian Economy/Stock Market and thus would also be of interest to those studying business in India.
Notice and Invitation
Oral Defense of Doctoral Dissertation
Doctor of Philosophy in Computational Sciences and Informatics
Department of Computational and Data Sciences
College of Science
George Mason University
Yang Xu
Bachelor of Science, Nanjing Normal University, 2006
Master of Science, University of Nebraska-Lincoln, 2009
Almost Regular Graphs and Hamiltonian Cycles
Tuesday, December 4, 2018, 3:00 p.m.
Research Hall, Room 92
All are invited to attend.
Committee
Edward Wegman, Dissertation Director
Eduardo Lopez
Geir Agnarrson
Joseph Mar
This dissertation is third in a series aimed at seeking a method to optimized computer architectures for robustness and efficiency. HADI graphs were first introduced in Hadi Rezazad’s dissertation and were further examined in Roger Shores’ dissertation. This dissertation explores this particular class of graph structure in details and defines this graph structure in a mathematical way. Hadi Graphs are a subset of almost regular graphs with certain invariants. The bound of edge numbers is presented to ensure the new structure Hamiltonian. Another interesting alternative interconnect graph that is called hypercube is discussed in this dissertation. The main focus is to find how many edges can be removed but still retain the Hamiltonian property
Computational Social Science Research Colloquium /
Colloquium in Computational and Data Sciences
Andrew Crooks, Assoc. Professor
Department of Computational and Data Sciences
George Mason University
Computational Modelling of Slums: Progress & Challenges
Friday, December 7, 3:00 p.m.
Center for Social Complexity, 3rd Floor Research Hall
All are welcome to attend.
Abstract:
Over the last 50 years the world has increasingly become more urbanized, much of this growth has occurred in less developed countries, which often lack the resources to accommodate such growth. This has led to the growth of slums, which is estimated to be home for other 1 Billion people. The UN-Habitat projects slum population to double by 2030, which would make them home for 2 in 5 people living in cities. In this talk I will introduce slums, discuss their growth, and provide an overview on what progress has been made to studying and modeling them. This will lead to a discussion of a series of key challenges that need to be addressed if we are to tackle slums from a computational perspective.
Computational Social Science Research Colloquium /
Colloquium in Computational and Data Sciences
Annetta Burger, CSS PhD Candidate
George Mason University
OPERATIONALIZING RESILIENCY
IN COMPLEX ADAPTIVE SYSTEMS: AN
AGENT-BASED MODEL OF A NWMD
DETONATION
Friday, January 25, 3:00 p.m.
Center for Social Complexity Suite, 3rd Floor Research Hall
All are welcome to attend.
Abstract: