Program Change Request

Date Submitted: 09/07/23 10:58 am

Viewing: SC-BS-MATH : Mathematics, BS

Last approved: 06/01/23 9:19 am
Last edit: 09/07/23 10:58 am
Changes proposed by: jbazaz

Catalog Pages

Using this Program
Mathematics, BS

No Longer

Anticipated closure
Nato li a ralondar
Rationale for
Are you completing this form on someone else's behalf?
Yes

Requestor:

In Workflow

1. MATH Chair
2. SC Curriculum

Committee
3. SC Assistant Dean
4. Assoc Provost-

Undergraduate
5. Registrar-Programs

Approval Path

1. 11/09/23 3:36 pm

Maria Emelianenko (memelian):

Approved for MATH Chair

History

1. Nov 21, 2017 by clmig-jwehrheim
2. Nov 21, 2017 by clmig-jwehrheim
3. Jan 17, 2018 by rzachari
4. Feb 7, 2018 by rzachari
5. Mar 1, 2018 by Jennifer Bazaz
Gettys (jbazaz)
6. Feb 8, 2019 by Jennifer Bazaz
Gettys (jbazaz)
7. Mar 27, 2019 by Tory Sarro (vsarro)
8. Jan 16, 2020 by Jennifer Bazaz

Gettys (jbazaz)
9. Mar 24, 2020 by Jennifer Bazaz
10. Feb 2, 2021 by jriemen
11. Mar 9, 2022 by Jennifer Bazaz Gettys (jbazaz)
12. May 2, 2022 by

Jennifer Bazaz
Gettys (jbazaz)
13. May 4, 2023 by

Jennifer Bazaz
Gettys (jbazaz)
14. Jun 1, 2023 by Tory

Sarro (vsarro)

Name	Extension	
Eatherine Sausville	1460	

Effective Catalog: 2024-2025
Program Level: Undergraduate
Program Type: Bachelor's
Degree Type: Bachelor of Science

Title: Mathematics, BS

Annunual ruitarin

1. What was the nrocessused within vour acade

2. What evidence was used to identifv need/dem:

- \quad.
a. Have vou ensured there are no other existing badg
b. Has CPE confirmed the proposed badge does not
c. Has the instructor(s) for this badge experience been
d Is thnun n anntant haurminimum?
- Ir an nerncrmant mnauimad?
f. Does this badge provide a benefit for current or

5. Is this badge co-sponsored with another
arganization aconciation or unit? (If vniu wnuld likes an
a. What is the organization, program, or department

Farning Critoria
Crires.
Ronas.
Dartirinant.
Daumant.
Dartfalin.
Dracontation.
Accacemant.
Crodontial•
Education
nthor.
Prniprt•
\rightarrow r \quad -
Srhadila/Rngictratinn.
V/nlintoor.
Skills Tag
Skills Tag
Badge Attributes
Dlazes colort ano fram oarh ratognru.
Achipvement Tvne:
Masterv Level:
Time Commitment:
Cnst:
Industrv Standards:
Recommendations:
Issuance information and Pricing
Pririna• Spe htnc./lrne amı edı/dinitalhadnenrisina/ for more information
Estimated Number of Badges Exnected to be Issued:
Notes•

- A Mason Digital Credentials Advisory Group may be developed to review badge

Banner Title: Mathematics, BS
Is this a retitling of
an existing
nrnaram?
Existing Program
Registrar/OAPI Use Approved
Only - SCHEV
Status
Registrar's Office
Use Only -
Program Start Term
Registrar/OAPI Use
Only - SCHEV
Letter
Registrar/OAPI Use
Only - SACSCOC
Status
Concentration(s):

	Associated Concentrations	Registrar's Office Use Only: Concentration Code
1	Individualized Concentration	IND
2	Pure Mathematics	PURM
3	Actuarial Mathematics	ACTM
4	Applied Mathematics	AMT

Catalog Published Information

Total Credits Total credits: minimum 120
Required:
Registrar's Office Use Only - Program Code:
SC-BS-MATH
Registrar/IRR Use
Only - Program CIP
Code
Admission
Requirements:

Admissions

University-wide admissions policies can be found in the Undergraduate Admissions Policies section of this catalog.
To apply for this program, please complete the George Mason University Admissions Application.

Program-Specific

 Policies:
Policies

Students must fulfill all Requirements for Bachelor's Degrees, including the Mason Core.
MATH 300 Introduction to Advanced Mathematics (Mason Core) meets the writing intensive requirement for this major. For policies governing all undergraduate programs, see AP. 5 Undergraduate Policies.
Graduating seniors are required to have an exit interview.

Language Proficiency Recommendation

The department recommends proficiency in French, German, or Russian.

Course Recommendations and Policies

A maximum of 6 credits of grades below 2.00 in coursework designated MATH or STAT may be applied toward the major. Students intending to enter graduate school in mathematics are strongly advised to take MATH 315 Advanced Calculus I and MATH 321 Abstract Algebra.
Students may not receive credit for both MATH 214 Elementary Differential Equations and MATH 216 Theory of Differential Equations; both MATH 213 Analytic Geometry and Calculus III and MATH 215 Analytic Geometry and Calculus III (Honors); both MATH 351 Probability and STAT 344 Probability and Statistics for Engineers and Scientists I; and both MATH 352 Statistics and STAT 354 Probability and Statistics for Engineers and Scientists II.
After receiving a grade of ' C ' or better in one of the courses listed below on the left, students may not receive credit for the corresponding course on the right:

Course May Not Receive Credit for
MATH 113 or MATH 123MATH 105 or MATH 108
MATH 351 or STAT 344 MATH 110
MATH 441 MATH 111
MATH 125
MATH 112

Degree Requirements:

Students should refer to the Admissions \& Policies tab for specific policies related to this program.
In addition to the mathematics core, science, and computational skills requirements, students must select one concentration from: Individualized Concentration (IND), Pure Mathematics (PURM), Actuarial Mathematics (ACTM), Applied Mathematics (AMT), Data Science (DSCI), or Mathematical Statistics (MTHS).

Mathematics Core

MATH 113 Analytic Geometry and Calculus I (Mason Core) 4
MATH 114 Analytic Geometry and Calculus II 4
MATH 125 Discrete Mathematics I (Mason Core) 3
MATH 203 Linear Algebra 3
MATH 213 Analytic Geometry and Calculus III 3
or MATH 215Analytic Geometry and Calculus III (Honors)
MATH 214 Elementary Differential Equations3
or MATH 216Theory of Differential Equations

MATH 300 Introduction to Advanced Mathematics (Mason Core) 13
MATH 322 Advanced Linear Algebra 3
Total Credits 26
1
Fulfills the writing intensive requirement.

Science

Select a one-year sequence of a laboratory science from the following courses:8-9
Biology Sequence:
BIOL 213 Cell Structure and Function (Mason Core).
Choose one from the following:

$\underline{\text { BIOL } 300}$	BioDiversity
$\underline{\text { BIOL } 308}$	Foundations of Ecology and Evolution (Mason Core).
$\underline{\text { BIOL } 311}$	General Genetics

Chemistry Sequence:

CHEM 211
\& CHEM 213
CHEM 212 \& CHEM 214 and General Chemistry Laboratory I (Mason Core). General Chemistry II (Mason Core).
Geology Sequence:

GEOL 101 Physical Geology (Mason Core).
\& GEOL 103 and Physical Geology Lab (Mason Core).
GEOL 102
Historical Geology (Mason Core).
\& GEOL 104 and Historical Geology Laboratory (Mason Core).
Physics Sequence:

PHYS 160 $\& ~ P H Y S ~ 161 ~$	University Physics I (Mason Core). and University Physics I Laboratory (Mason Core). PHYS 260
University Physics II (Mason Core).	
\& PHYS 261	and University Physics II Laboratory (Mason Core).

Total Credits

Computational Skills

CS 112 Introduction to Computer Programming (Mason Core) 4
Total Credits
4

Individualized Concentration (IND)

Students who are not choosing a concentration in pure mathematics, applied mathematics, data science, mathematical statistics, or actuarial science may choose an individualized concentration. The individualized concentration allows students to take coursework in a variety of fields. Students should work closely with a mathematics advisor and have their individual degree plan approved no later than their junior year.

Required Courses
MATH 315 Advanced Calculus I
Select two from the following:

MATH 316
MATH 321
MATH 421
MATH 431
MATH 432
MATH 433
MATH 464
MATH 465

Advanced Calculus II
Abstract Algebra
Abstract Algebra II
Topology
Differential Geometry
Algebraic Geometry
Linear Algebra with Data Applications
Mathematics of Data Science
Electives
|Choose 12 additional upper-level MATH-prefixed credits, not taken above. 1
12
Additional Science
Select one option from the following:

1. A second sequence from the choices under "Science" above
2.6 credits from more advanced courses in biology, chemistry, geology, or physics 2
2. The 4 -credit option of PHYS 262 and PHYS 263

Select two courses from the following:
6
4. Select two courses from the following:

CDS 230	Modeling and Simulation I
CDS 301	Scientific Information and Data Visualization
CS 211	Object-Oriented Programming
CS 310	Data Structures
CS 330	Formal Methods and Models
CS 483	Analysis of Algorithms

Total Credits
1
Excluding MATH 400 History of Math (Topic Varies) (Mason Core)
$\underline{\underline{2}}$
Only refers to courses acceptable for credit toward a natural science major. Consider courses from the following: BIOL 300499, CHEM 300-499, GEOL 300-499, PHYS 300-499.

Concentration in Pure Mathematics (PURM)

Pure mathematics is the study of ideas and structures that underlie all of mathematics. This concentration provides exciting opportunities for students interested in advanced coursework in the fields traditionally referred to as "pure mathematics". The concentration prepares students for a wide variety of careers involving mathematical thinking or graduate studies in pure mathematics.
Breadth Requirements
MATH 315 Advanced Calculus I 3
MATH 321 Abstract Algebra 3
MATH 411 Functions of a Complex Variable 3
Choose one from the following: 3
MATH 312 Geometry
MATH 431 Topology
Depth Requirements

Select two from the following:

MATH 312	Geometry (if not chosen above)
MATH 316	Advanced Calculus II
$\underline{\text { MATH 325 }}$	Discrete Mathematics II
$\underline{\text { MATH 421 }}$	Abstract Algebra II
$\underline{\text { MATH 431 }}$	Topology (if not chosen above)
$\underline{\text { MATH 432 }}$	Differential Geometry
$\underline{\text { MATH 433 }}$	Algebraic Geometry

Additional Mathematics
Choose 3 credits of upper level MATH-prefixed credits 1
3
Additional Science
Select one option from the following:

1. A second sequence from the choices under "Science" above
2.6 credits from more advanced courses in biology, chemistry, geology, or physics 2
2. The 4-credit option of PHYS 262 and PHYS 263
3. Select two courses from the following:

CDS 230	Modeling and Simulation I
CDS 301	Scientific Information and Data Visualization
CS 211	Object-Oriented Programming
CS 310	Data Structures
CS 330	Formal Methods and Models
CS 483	Analysis of Algorithms

Total Credits
1
Excluding MATH 400 History of Math (Topic Varies) (Mason Core).
$\underline{\underline{2}}$
Only refers to courses acceptable for credit toward a natural science major. Consider courses from the following: BIOL 300499, CHEM 300-499, GEOL 300-499, PHYS 300-499.

Concentration in Actuarial Mathematics (ACTM)

This concentration provides exciting opportunities for students interested in studying actuarial mathematics. Expertise in this field leads directly into a career as a practicing actuary with an insurance company, consulting firm, or in government employment.

ACTM Courses
MATH 351 Probability 3
MATH 352 Statistics 3
MATH 551 Regression and Time Series 3
MATH 554 Financial Mathematics 3
MATH 555 Actuarial Modeling I 3
MATH 557 Financial Derivatives 3
ACCT 203 Survey of Accounting 3
ECON 103 Contemporary Microeconomic Principles (Mason Core). 3
ECON 306 Intermediate Microeconomics 13
or ECON 310 Money and Banking
or FNAN 321 Financial Institutions
STAT 362 Introduction to Computer Statistical Packages 3
Select two from the following:
MATH 441Deterministic Operations Research
MATH 442Stochastic Operations Research
MATH 446Numerical Analysis I
MATH 453Advanced Mathematical Statistics
Total Credits
1
For mathematics majors, the Department of Economics has agreed to waive the ECON 104 prerequisite.

Concentration in Applied Mathematics (AMT)

This concentration provides exciting opportunities for students interested in taking additional classes in applied mathematics. The concentration prepares students to deal with real-world applications in science and engineering, or to pursue graduate studies in applied mathematics.

AMT Courses
MATH 313 Introduction to Applied Analysis 3
MATH 315 Advanced Calculus I 3
MATH 351 Probability 3
MATH 413 Modern Applied Mathematics I 3
MATH 446 Numerical Analysis I 3
Select 3 credits of MATH courses numbered above 3001
Select two courses from the following: 6
MATH 314 Advanced Differential Equations
MATH 414 Modern Applied Mathematics II
MATH 478 Introduction to Partial Differential Equations with Numerical Methods
Additional Science Courses
Select additional science credits from one of the following options:

1. A second sequence from the choices under "Science" above
2. Select 6 credits from more advanced courses in biology, chemistry, geology, or physics 2
3. The 4-credit option of PHYS 262 and PHYS 263
4. Select two courses from the following:

CDS 230 Modeling and Simulation I
CDS 301 Scientific Information and Data Visualization
CS 211 Object-Oriented Programming
CS 310 Data Structures
CS 330 Formal Methods and Models
CS 483 Analysis of Algorithms
Total Credits

Excluding MATH 400 History of Math (Topic Varies) (Mason Core)

Only refers to courses acceptable for credit toward a natural science major. Consider courses from the following: BIOL 300499, CHEM 300-499, GEOL 300-499, PHYS 300-499.

Concentration in Data Science (DSCI)

The data science concentration prepares math majors for careers in industry and academia with a focus on the rapidly developing area of the mathematics of data science. Students in this program will develop analytical and computational skills that will provide a deeper understanding of machine learning and data science concepts.

By mastering the theoretical foundation underlying practical algorithms and uncovering inherent connections with several branches of modern mathematics, students will hone their creativity and independent thinking skills necessary to lead the data science revolution.

Data Science Courses

MATH 315 Advanced Calculus I 3
MATH 351 Probability 3
MATH 446 Numerical Analysis I 3
MATH 464 Linear Algebra with Data Applications 3
Select two options from the following: 6-7
MATH 447 Numerical Analysis II
MATH 462 Mathematics of Machine Learning and Industrial Applications I
\& MATH 463 and Mathematics of Machine Learning and Industrial Applications II

MATH 465 Mathematics of Data Science

Select one course from the following:
MATH 352 Statistics
STAT 350 Introductory Statistics II
STAT 360 Introduction to Statistical Practice II
STAT 356 Statistical Theory
Select one course from the following:
CDS 301 Scientific Information and Data Visualization
CDS 302 Scientific Data and Databases (Mason Core).
CS 310 Data Structures
Additional Science Courses
Select additional science credits from one of the following options:

1. Select one course from the following:

BIOL 213 Cell Structure and Function (Mason Core)
CHEM 211 General Chemistry I (Mason Core)
\& CHEM 213 and General Chemistry Laboratory I (Mason Core)
GEOL $101 \quad$ Physical Geology (Mason Core)
\& GEOL 103 and Physical Geology Lab (Mason Core)
PHYS 160 University Physics I (Mason Core)
\& PHYS 161 and University Physics I Laboratory (Mason Core)
2. 3 credits from more advanced courses in biology, chemistry, geology, or physics 1
3. The 4 credit option of PHYS 262 and PHYS 263

Total Credits

Only refers to courses acceptable for credit toward a natural science major. Consider courses from the following: BIOL 300499, CHEM 300-499, GEOL 300-499, PHYS 300-499.

Concentration in Mathematical Statistics (MTHS)

This concentration provides exciting opportunities for students interested in taking additional classes on statistics and data analysis. The concentration prepares data analysts able to deal with real world applications in science and engineering.
MTHS Courses
MATH 315 Advanced Calculus I 3
MATH 351 Probability 3
MATH 352 Statistics 3
MATH 453 Advanced Mathematical Statistics 3
MATH 551 Regression and Time Series 3
STAT 362 Introduction to Computer Statistical Packages 3
Select one from: 3

STAT 260 Introduction to Statistical Practice I STAT 350 STAT 360	Introductory Statistics II
Introduction to Statistical Practice II	

Select two from the following:
6

STAT 455 STAT 460 Experimental Design STAT 462 Introduction to Biostatistics STAT 463 Applied Multivariate Statistics STAT 465 Introduction to Exploratory Data Analysis STAT 472 Nonparametric Statistics and Categorical Data Analysis STAT 474 Introduction to Statistical Learning	Introduction to Survey Sampling

Additional Science Courses
Select additional science credits from one of the following options:

1. Choose one from the following different lab sciences:

BIOL 213	Cell Structure and Function (Mason Core)
CHEM 211	General Chemistry I (Mason Core).
\& CHEM 213	and General Chemistry Laboratory I (Mason Core)
GEOL 101	Physical Geology (Mason Core).
\& GEOL 103	and Physical Geology Lab (Mason Core).
PHYS 160	University Physics I (Mason Core).
\& PHYS 161	and University Physics I Laboratory (Mason Core).

2. Choose 3 credits from more advanced courses in biology, chemistry, geology, or physics 1
3. Choose the 4 credit option of PHYS 262 and PHYS 263
4. Choose one course from the following:

$\underline{\text { CDS 230 }}$	Modeling and Simulation I CDS 301
$\underline{\text { SCientific Information and Data Visualization }}$	
$\underline{\text { CS 310 }}$	Object-Oriented Programming
CS 330	Data Structures

Only refers to courses acceptable for credit toward a natural science major. Consider courses from the following: BIOL 300499, CHEM 300-499, GEOL 300-499, PHYS 300-499.

Retroactive

Requirements
Updates:
Plan of Study:
Honors
Information:

Honors in the Major

Eligibility

Mathematics majors who have maintained a GPA of at least 3.50 in mathematics courses and a GPA of 3.50 in all courses taken at George Mason University may apply to the departmental honors program upon completion of two MATH courses at the 300+ level (excluding MATH 400 History of Math (Topic Varies) (Mason Core)), at least one of which has MATH 300 Introduction to Advanced Mathematics (Mason Core) as a prerequisite. Admission to the program will be monitored by the undergraduate committee.

Honors Requirements

To graduate with honors in mathematics, a student is required to maintain a minimum GPA of 3.50 in mathematics courses and successfully complete MATH 405 Honors Thesis in Mathematics I and MATH 406 RS: Honors Thesis in Mathematics II with an average GPA of at least 3.50 in these two courses.

Accelerated
Description/Dual
Degree
Description:

INTO-Mason
Requirements:

College
Requirements \&
Policies:

Department /
Academic Unit
Requirements \&
Policies:

Program Outcomes

Additional Program Information

This information is required by the Office of Accreditation and Program Integrity.
Courses offered via
distance (if
applicable):
Indicate whether
students are able
What is the Face-to-Face Only
primary delivery
format for the
program?

Does any portion of this program occur off-campus?
No

Are you working with a vendor / other collaborators to offer your program?
No
Please explain:

Related

Departments
Could this program prepare students for any type of professional licensure, in Virginia or elsewhere?

No
Please explain:
Are you adding or removing a licensure component?
No
Please explain:

Additional SCHEV \& SACSCOC Information

Is the content of the new program closely related to that of an existing approved program at the same instructional level (i.e., baccalaureate, master's, doctoral)?

Which existing approved program(s)?

Is this new program considered to be "advancing the degree level of a currently approved program" (i.e existing content is at lower degree level, new content is at the higher degree level)?

Which existing approved program(s)?

Is this new program considered to be "lowering the degree level of a currently approved program" (i.e. existing content is at higher degree level, new content is at the lower degree level)?

Which existing approved program(s)?

Is this a re-opening of a program that was closed to admission within the last five years?

Date of Program Closure

What are the methods of delivery for the program?

Does this program include a course/credit-based competency-based education delivery option?

Is this change a simple retitling of an existing program, with no other changes, to any existing program content, curriculum requirements, etc?

No
Does this change represent a repackaging of content in an existing approved degree/certificate program at the same instructional level (i.e., baccalaureate, master's, or doctoral)?

No
Which existing approved program(s)?

Percentage of total credits containing new course content. ("New course content" is defined by SACSCOC as content that is not currently included in an existing approved degree/certificate program at the same instructional level. Do not exclude gen ed credits in calculations for undergraduate programs.)

0\%-24\%
Does this change include the addition of a distance education or face-to-face method of delivery for this program?
No
What is the new method of delivery?

Does this change include the addition of a course/credit-based competency-based education delivery option?
No
Will any additional equipment/facilities be needed?
No
Description of institutional impact:

Will any additional faculty be required?
No
Description of institutional impact:

Will any additional financial resources be needed?
No
Description of institutional impact:

Additional library/learning resources needed?
No
Description of institutional impact:

OAPI Use Only - Determination of SACSCOC Impact

Comments or Notes

Green Leaf Program Designation

Is this a Green Leaf No
program?
Green Leaf
nocianatinn
Sustainability-focused academic programs require at least one green leaf course. Either that course is itself
sustainability-focused or else the program requires a set of sustainability-related courses with aggregated

Relationship to
Fvictino Drnoramc
List sustainabilityfocused courses currently required
in the degree
Sustainability-related academic programs either require at least one sustainability-related course or plse offer anv orepn leaf course as an ontion or plective.*

List sustainability-
related courses
currently required
in the degree

Does this program cover material which crosses into another department?
No
Impacted
nenartmentc

Additional	UGC-COS-Program Mod BS Math.pdf
Attachments	UGC-COS-Program-Mod-bsmath 001.pdf
	BS in_math_modification_ProgramApprovalForm_COSCC-
	2 ACTUARIAL pdf

SCHEV Proposal
Executive Summary
Reviewer
Comments
Additional
Comments
Is this course required of all students in this degree program?
\%wi_required.eschtml\%
Attached \%attach document.eschtml\%
Dncimment

