Program Change Request

Date Submitted: 03/22/23 1:55 pm
Viewing: SC-BS-MATH : Mathematics, BS
Last approved: 05/02/22 2:43 pm
Last edit: 03/30/23 11:29 am
Changes proposed by: jbazaz

Catalog Pages
Using this Program
Mathematics, BS

Are you completing this form on someone else's behalf?

Yes

Requestor:

In Workflow

1. MATH Chair
2. SC Curriculum

Committee
3. SC Associate Dean
4. Assoc Provost-

Undergraduate
5. Registrar:Concentrat

Code
6. Registrar-Programs

Approval Path

1. 03/22/23 2:00 pm Maria Emelianenko (memelian):
Approved for MATH Chair

History

1. Nov 21, 2017 by clmig-jwehrheim
2. Nov 21, 2017 by clmig-jwehrheim
3. Jan 17, 2018 by rzachari
4. Feb 7, 2018 by rzachari
5. Mar 1, 2018 by Jennifer Bazaz

Gettys (jbazaz)
6. Feb 8, 2019 by

Jennifer Bazaz
Gettys (jbazaz)
7. Mar 27, 2019 by

Tory Sarro (vsarro)
8. Jan 16, 2020 by

Jennifer Bazaz
Gettys (jbazaz)
9. Mar 24, 2020 by Jennifer Bazaz

Gettys (jbazaz)
10. Feb 2, 2021 by jriemen
11. Mar 9, 2022 by Jennifer Bazaz Gettys (jbazaz)
12. May 2, 2022 by

Jennifer Bazaz
Gettys (jbazaz)

Name	Extension	
Catherine Sausville	1460	

Effective Catalog: 2023-2024
Program Level: Undergraduate
Program Type: Bachelor's
Degree Type: Bachelor of Science
Title: Mathematics, BS
Banner Title: Mathematics, BS
Registrar/OAPI Use Approved
Only - SCHEV
Status
Registrar's Office
Use Only -
Program Start Term
Registrar/OAPI Use
Only - SCHEV
Letter
Registrar/OAPI Use
Only - SACSCOC
Status

Concentration(s):

	Associated Concentrations	Registrar's Office Use Only: Concentration Code
$\mathbf{1}$	Individualized Concentration	INDC
$\mathbf{2}$	Pure Mathematics	PURM
$\mathbf{3} \boldsymbol{z}$	Actuarial Mathematics	ACTM
$4 z$	Applied Mathematics	AMT
54	Data Science	DSCI
63	Mathematical Statistics	MTHS

Registrar/IRR Use

Only -
Concentration CIP
Code
College/School: College of Science
Department / Mathematical Sciences
Academic Unit:
Jointly Owned No
Program?

Justification

What: Remove "no concentration" option.
Why: We would like to require students to choose a concentration.

What: Add "Individualized Concentration"
Why: To create something similar to the current no concentration but more flexible.

What: Add "Pure Math Concentration"
Why: Primarily to prepare graduate school-bound students.

Total Credits Total credits: minimum 120
Required:
Registrar's Office Use Only - Program Code:
SC-BS-MATH
Registrar/IRR Use
Only - Program CIP
Code
Admission
Requirements:
Admissions

University-wide admissions policies can be found in the Undergraduate Admissions Policies section of this catalog. To apply for this program, please complete the George Mason University_Admissions Application.

Program-Specific

Policies:

Policies

Students must fulfill all Requirements for Bachelor's Degrees, including the Mason Core.
MATH 300 Introduction to Advanced Mathematics meets the writing intensive requirement for this major.
For policies governing all undergraduate programs, see AP. 5 Undergraduate Policies.
Graduating seniors are required to have an exit interview.

Language Proficiency Recommendation

The department recommends proficiency in French, German, or Russian.

Course Recommendations and Policies

A maximum of 6 credits of grades below 2.00 in coursework designated MATH or STAT may be applied toward the major.
Students intending to enter graduate school in mathematics are strongly advised to take MATH 315 Advanced Calculus I and MATH 321 Abstract Algebra.

Students may not receive credit for both MATH 214 Elementary Differential Equations and MATH 216 Theory of Differential Equations; both MATH 213 Analytic Geometry and Calculus III and MATH 215 Analytic Geometry and Calculus III (Honors); both MATH 351 Probability and STAT 344 Probability and Statistics for Engineers and Scientists I; and both MATH 352 Statistics and STAT 354 Probability and Statistics for Engineers and Scientists II.
After receiving a grade of ' C ' or better in one of the courses listed below on the left, students may not receive credit for the corresponding course on the right:

Course

MATH 113 or MATH 123
MATH 351 or STAT 344
MATH 441
MATH 125

May Not Receive Credit for
MATH 105 or MATH 108
MATH 110
MATH 111
MATH 112

Degree Requirements:

Students should refer to the Admissions \& Policies tab for specific policies related to this program.
In addition to the mathematics core, science, and computational skills requirements, students must may select one an optionat concentration from: Individualized Concentration (INDC), Pure Mathematics (PURM), Actuarial in Actuariał Mathematics (ACTM), Applied Mathematics (AMT), Data Science (DSCI), or Mathematical Statistics (MTHS).

MATH 114	Analytic Geometry and Calculus II	4
MATH 125	Discrete Mathematics I (Mason Core).	3
MATH 203	Linear Algebra	3
MATH 213	Analytic Geometry and Calculus III	3
or MATH 215	Analytic Geometry and Calculus III (Honors)	
MATH 214	Elementary Differential Equations	3
or MATH 216	Theory of Differential Equations	
MATH 300	Introduction to Advanced Mathematics 1	3
MATH 322	Advanced Linear Algebra	3

1 Fulfills the writing intensive requirement.

Science

Select a one-year sequence of a laboratory science from the following courses:
Biology Sequence:
BIOL 213 Cell Structure and Function
Choose one from the following:

$\underline{\text { BIOL } 300}$	BioDiversity
$\underline{\text { BIOL } 308}$	Foundations of Ecology and Evolution
$\underline{\text { BIOL 311 }}$	General Genetics

Chemistry Sequence:
CHEM 211
General Chemistry I (Mason Core).
\& CHEM 213 and General Chemistry Laboratory I (Mason Core)

CHEM 212
\& CHEM 214
General Chemistry II (Mason Core). and General Chemistry Laboratory II (Mason Core)
Geology Sequence:
GEOL 101
\& GEOL 103
GEOL 102
\& GEOL 104

> Physical Geology (Mason Core). and Physical Geology Lab (Mason Core).
> Historical Geology (Mason Core). \quad and Historical Geology Laboratory (Mason Core).

Physics Sequence:
PHYS 160
\& PHYS 161
PHYS 260
\& PHYS 261
University Physics I (Mason Core).
and University Physics I Laboratory (Mason Core)
University Physics II (Mason Core).
\quad and University Physics II Laboratory (Mason Core).

Total Credits

Computational Skills

CS 112 Introduction to Computer Programming (Mason Core). 4
Total Credits

Individualized BS without Concentration (INDC)

Students who are not choosing a concentration in pure mathematics, applied mathematics, data tin adelition to the mathematies core, science, mathematical statistics, or actuarial science may choose an individualized concentration. The individualized concentration allows andeomputational skills requirements listed above, students to take coursework in a variety of fields. who are not choosing a concentration must complete the following eoursework. Students should work closely with a mathematics advisor and have their individual degree plan approved no later than their junior year.

1Exeluding MATH 400\%7CCode-
ZOnly refers to courses acceptable for credit toward a natural seience major. Consider courses from the following: BIOL 300-499, CHEM 300-499, GEOL 300-499, PHYS 300-499.
$34 p$ to 3 eredits in math $490 \% 7$ CCode and 6 eredits in math $491 \% 7$ CCode ean be applied to this requirement.
A total of 12 eredits between MATH 490\%7CCode and MATH 491\%7CCode ean be applied to this degree via this eoncentration option and any elective credits.
Fraditional Mathematics
MATH315 Advaneed Caleulus t 3
MATH31G Advanced Cateulus H 子
MATH321 Abstract Algebra
or MATH 431 Fopology
Select 12 additional eredits of MATH courses numbered above 300 1,3 12
Additional-Seience
Setect additional science credits from one of the following options:

1. A second sequence from the choices under "Seience" above
2. G credits from more advanced courses in biology, chemistry, geology, or physies 2
3. The 4-eredit option of PHIYS 262 and PHIYS 263
4. Choose two courses from the following:

EDS $230 \quad$ Aodeling and Sinulation
CDS 301 Seientific Information and Data Visualization
ES $211 \quad$ Object-Oriented Programming
ES 310 DataStruetures
ES 330 Formal Methods and Modets
ES 483 Analysis of Algorithms
FotalCredits θ
Required Courses

MATH 315	Advanced Calculus I
Select two from the following:	
MATH 316	Advanced Calculus II
MATH 321	Abstract Algebra
MATH 421	Abstract Algebra II
MATH 431	Topology
MATH 432	Differential Geometry

MATH 433	Algebraic Geometry
MATH 464	Linear Algebra with Data Applications
MATH 465	Mathematics of Data Science

Electives

Choose 12 additional upper-level MATH-prefixed credits, not taken above.
Additional Science
Select one option from the following:

1. A second sequence from the choices under "Science" above
2. $\mathbf{6}$ credits from more advanced courses in biology, chemistry, geology, or physics 1
3. The 4-credit option of PHYS 262 and PHYS 263

Select two courses from the following:

CDS 230	Modeling and Simulation I
CDS 301	
$\underline{\text { CS 211 }}$	Scientific Information and Data Visualization
CS 310	Object-Oriented Programming
CS 330	Data Structures
CS 483	Formal Methods and Models
	Analysis of Algorithms

Total Credits
1Only refers to courses acceptable for credit toward a natural science major. Consider courses from the following: BIOL 300-499, CHEM 300-499, GEOL 300-499, PHYS 300-499.

Concentration in Pure Actuariał Mathematics (PURM)

Pure mathematics is the study of ideas and structures that underlie all of mathematics. (ACTM)This concentration provides exciting opportunities for students interested in advanced coursework in the fields traditionally referred to as "pure mathematics". studying actuarial mathematies. The concentration prepares students for a wide variety of careers involving mathematical thinking or graduate studies in pure mathematics.
Breadth Requirements

MATH 321
MATH $411 \quad$ Functions of a Complex Variable
Choose one from the following:
MATH 312 Geometry
MATH 431
Depth Requirements
Select two from the following:

MATH 312
MATH 316
MATH 325
MATH 421
MATH 431
MATH 432

MATH 315 Advanced Calculus I 3

Topology
Abstract Algebra 33

Geometry (if not chosen above)
Advanced Calculus II
Discrete Mathematics II
Abstract Algebra II
Topology (if not chosen above)
Differential Geometry

1. A second sequence from the choices under "Science" above
2.6 credits from more advanced courses in biology, chemistry, geology, or physics 1
2. The 4-credit option of PHYS 262 and PHYS 263

Total Credits
1Only refers to courses acceptable for credit toward a natural science major. Consider courses from the following: BIOL 300-499, CHEM 300-499, GEOL 300-499, PHYS 300-499.

Expertise in this field leads directly into a-career as a practicing aetuary With an insurance-company, consulting firm, or in governmentemployment.Concentration in Actuarial Applied Mathematics (ACTM) (AMT)

This concentration provides exciting opportunities for students interested in studying actuarial taking adelitionat etassen applied mathematics. Expertise in this field leads directly into a career as a practicing actuary with an insurance company, consulting firm, or in government employment.

ACTM Courses
MATH 351 Probability 3

MATH 352
Statistics 3

MATH 551
Regression and Time Series3

MATH 554 Financial Mathematics 3
MATH 555 Actuarial Modeling I 3
MATH 557 Financial Derivatives 3
ACCT 203
Survey of Accounting 3
ECON 103 Contemporary Microeconomic Principles (Mason Core). 3
ECON 306 Intermediate Microeconomics 1 - 3
or ECON 310 Money and Banking
or FNAN 321 Financial Institutions
STAT 362 Introduction to Computer Statistical Packages 3
Select two from the following: 6
MATH 441 Deterministic Operations Research
MATH 442 Stochastic Operations Research
MATH 446 Numerical Analysis I
MATH $453 \quad$ Advanced Mathematical Statistics
Total Credits
1For mathematics majors, the Department of Economics has agreed to waive the ECON 104 prerequisite.

Concentration in Applied Mathematics (AMT)

This concentration provides exciting opportunities for students interested in taking additional classes in applied
 science and engineering, or to pursue graduate studies in applied mathematics. engering.

AMT Courses
MATH 313 Introduction to Applied Analysis 3
MATH 315 Advanced Calculus I 3
MATH 351 Probability 3
MATH 413 Modern Applied Mathematics I 3
MATH 446 Numerical Analysis I 3
Select 3 credits of MATH courses numbered above 3001 3
Select two courses from the following: 6
MATH 314 Advanced Differential Equations
MATH 414 Modern Applied Mathematics II
MATH 478 Introduction to Partial Differential Equations with Numerical Methods
Additional Science Courses
Select additional science credits from one of the following options:

1. A second sequence from the choices under "Science" above
2. Select 6 credits from more advanced courses in biology, chemistry, geology, or physics 2
3. The 4-credit option of PHYS 262 and PHYS 263
4. Select two courses from the following:

CDS 230 Modeling and Simulation I
CDS 301 Scientific Information and Data Visualization
CS 211 Object-Oriented Programming
CS 310 Data Structures
CS 330 Formal Methods and Models
CS 483 Analysis of Algorithms
Total Credits
1Excluding MATH 400.
2Only refers to courses acceptable for credit toward a natural science major. Consider courses from the following: BIOL 300-499, CHEM 300-499, GEOL 300-499, PHYS 300-499.

Concentration in Data Science (DSCI)

The data science concentration prepares math majors for careers in industry and academia with a focus on the rapidly developing area of the mathematics of data science. Students in this program will develop analytical and computational skills that will provide a deeper understanding of machine learning and data science concepts. By mastering the theoretical foundation underlying practical algorithms and uncovering inherent connections with several branches of modern mathematics, students will hone their creativity and independent thinking skills necessary to lead the data science revolution.

Data Science Courses

MATH 315 Advanced Calculus I 3
MATH $351 \quad$ Probability 3
MATH 446 Numerical Analysis I 3
MATH 464 Linear Algebra with Data Applications
Select two options from the following:
MATH $447 \quad$ Numerical Analysis II
MATH 462 Mathematics of Machine Learning and Industrial Applications I
\& MATH 463 and Mathematics of Machine Learning and Industrial Applications II
MATH 465 Mathematics of Data Science
Select one course from the following:
MATH 352 Statistics
STAT 350 Introductory Statistics II
STAT 360 Introduction to Statistical Practice II
STAT 356 Statistical Theory
|Select one course from the following:
CDS 301 Scientific Information and Data Visualization
CDS 302 Scientific Data and Databases
CS 310 Data Structures
Additional Science Courses
Select additional science credits from one of the following options:

1. Select one course from the following:

BIOL 213 Cell Structure and Function
CHEM 211 General Chemistry I (Mason Core)
\& CHEM 213 and General Chemistry Laboratory I (Mason Core).
GEOL 101
Physical Geology (Mason Core) and Physical Geology Lab (Mason Core)

University Physics I (Mason Core)
and University Physics I Laboratory (Mason Core).
2. 3 credits from more advanced courses in biology, chemistry, geology, or physics 1
3. The 4 credit option of PHYS 262 and PHYS 263

Total Credits
1Only refers to courses acceptable for credit toward a natural science major. Consider courses from the following: BIOL 300-499, CHEM 300-499, GEOL 300-499, PHYS 300-499.

Concentration in Mathematical Statistics (MTHS)

This concentration provides exciting opportunities for students interested in taking additional classes on statistics and data analysis. The concentration prepares data analysts able to deal with real world applications in science and engineering.

MTHS Courses

MATH 352 Statistics 3
MATH 453
Advanced Mathematical Statistics 3
MATH 551
Regression and Time Series 3
STAT 362 Introduction to Computer Statistical Packages
Select one from: 3

STAT 260 Introduction to Statistical Practice I STAT 350 Introductory Statistics II STAT 360 Introduction to Statistical Practice II In	

Select two from the following:

STAT 455
STAT 460
STAT 462
STAT 463
STAT 465
STAT 472
STAT 474

Experimental Design
Introduction to Biostatistics
Applied Multivariate Statistics
Introduction to Exploratory Data Analysis
Nonparametric Statistics and Categorical Data Analysis
Introduction to Statistical Learning
Introduction to Survey Sampling

Additional Science Courses
Select additional science credits from one of the following options:

1. Choose one from the following different lab sciences:

BIOL 213
Cell Structure and Function
General Chemistry I (Mason Core).
\& CHEM 213
GEOL 101
\& GEOL 103
PHYS 160
\& PHYS 161
and General Chemistry Laboratory I (Mason Core).
Physical Geology (Mason Core).
and Physical Geology Lab (Mason Core)
University Physics I (Mason Core)
and University Physics I Laboratory (Mason Core).
2. Choose 3 credits from more advanced courses in biology, chemistry, geology, or physics 1
3. Choose the 4 credit option of PHYS 262 and PHYS 263
4. Choose one course from the following:

CDS 230	Modeling and Simulation I
CDS 301	Scientific Information and Data Visualization
CS 211	Object-Oriented Programming
CS 310	Data Structures
CS 330	Formal Methods and Models
CS 483	Analysis of Algorithms

Total Credits
1Only refers to courses acceptable for credit toward a natural science major. Consider courses from the following: BIOL 300-499, CHEM 300-499, GEOL 300-499, PHYS 300-499.

Retroactive

Requirements
Updates:

Plan of Study:
Honors
Information:

Honors in the Major

Eligibility

Mathematics majors who have maintained a GPA of at least 3.50 in mathematics courses and a GPA of 3.50 in all courses taken at George Mason University may apply to the departmental honors program upon completion of two MATH courses at the 300+ level (excluding MATH 400 History of Math (Topic Varies) (Mason Core)), at least one of which has MATH 300 Introduction to Advanced Mathematics as a prerequisite. Admission to the program will be monitored by the undergraduate committee.

Honors Requirements

To graduate with honors in mathematics, a student is required to maintain a minimum GPA of 3.50 in mathematics courses and successfully complete MATH 405 Honors Thesis in Mathematics I and MATH 406 RS: Honors Thesis in Mathematics II with an average GPA of at least 3.50 in these two courses.

Program Outcomes

Additional Program Information

This information is required by the Office of Accreditation and Program Integrity.
Courses offered via distance (if applicable):
What is the
primary delivery
format for the-to-Face Only
program?

Does any portion of this program occur off-campus?
No
Are you working with a vendor / other collaborators to offer your program?
No

Related

Departments

Could this program prepare students for any type of professional licensure, in

 Virginia or elsewhere?Are you adding or removing a licensure component?

Additional SCHEV \& SACSCOC Information

Is this change a simple retitling of an existing program, with no other changes, to any existing program content, curriculum requirements, etc?

No

Does this change represent a repackaging of content in an existing approved degree/certificate program at the same instructional level (i.e., baccalaureate, master's, or doctoral)?

No
Percentage of total credits containing new course content. ("New course content" is defined by SACSCOC as content that is not currently included in an existing approved degree/certificate program at the same instructiona level. Do not exclude gen ed credits in calculations for undergraduate programs.)

0\%-24\%

Does this change include the addition of a distance education or face-to-face method of delivery for this program:

No
Does this change include the addition of a course/credit-based competency-based education delivery option?

No
Will any additional equipment/facilities be needed?

No
Will any additional faculty be required?

No
Will any additional financial resources be needed?

No
Additional library/learning resources needed?

No

OAPI Use Only - Determination of SACSCOC Impact

Comments or Notes

Green Leaf Program Designation

Is this a Green Leaf No
program?

Does this program cover material which crosses into another department?
No

Additional	UGC-COS-Program Mod BS Math.pdf
Attachments	UGC-COS-Program-Mod-bsmath_001.pdf
	BS_in_math_modification_ProgramApprovalForm_COSCC-
	$\underline{\text { 2 ACTUARIAL.pdf }}$

SCHEV Proposal

Executive Summary

Reviewer

Comments

Additional
 Comments

Is this course required of all students in this degree program?
\%wi_required.eschtml\%

