Program Change Request

Date Submitted: 03/22/23 1:55 pm

Viewing: SC-BS-MATH: Mathematics, BS

Last approved: 05/02/22 2:43 pm

Last edit: 03/30/23 11:29 am

Changes proposed by: jbazaz

Catalog Pages
Using this Program
Mathematics, BS

Are you completing this form on someone else's behalf?

Yes

Requestor:

In Workflow

- 1. MATH Chair
- 2. SC Curriculum
 Committee
- 3. SC Associate Dean
- 4. Assoc Provost-Undergraduate
- Registrar:Concentrat Code
- 6. Registrar-Programs

Approval Path

1. 03/22/23 2:00 pm Maria Emelianenko (memelian): Approved for MATH Chair

History

- 1. Nov 21, 2017 by clmig-jwehrheim
- 2. Nov 21, 2017 by clmig-jwehrheim
- 3. Jan 17, 2018 by rzachari
- 4. Feb 7, 2018 by rzachari
- 5. Mar 1, 2018 by Jennifer Bazaz Gettys (jbazaz)
- 6. Feb 8, 2019 by Jennifer Bazaz Gettys (jbazaz)
- 7. Mar 27, 2019 by Tory Sarro (vsarro)

8. Jan 16, 2020 by Jennifer Bazaz Gettys (jbazaz)

9. Mar 24, 2020 by Jennifer Bazaz Gettys (jbazaz)

10. Feb 2, 2021 by jriemen

11. Mar 9, 2022 by Jennifer Bazaz Gettys (jbazaz)

12. May 2, 2022 by Jennifer Bazaz Gettys (jbazaz)

Name	Extension	Email
Catherine Sausville	1460	csausvil@gmu.edu

Effective Catalog: 2023-2024

Program Level: Undergraduate

Program Type: Bachelor's

Degree Type:Bachelor of Science

Title: Mathematics, BS

Banner Title: Mathematics, BS

Registrar/OAPI Use

Only – SCHEV

Status

Approved

Registrar's Office Use Only –

Program Start Term

Registrar/OAPI Use Only – SCHEV

Letter

Registrar/OAPI Use Only – SACSCOC

Status

Concentration(s):

	Associated Concentrations	Registrar's Office Use Only: Concentration Code
1	Individualized Concentration	INDC
2	Pure Mathematics	PURM
3 1	Actuarial Mathematics	ACTM
4 2	Applied Mathematics	AMT
5 4	Data Science	DSCI
6 3	Mathematical Statistics	MTHS

Registrar/IRR Use

Only-

Concentration CIP

Code

College/School: College of Science

Department / Mathematical Sciences

Academic Unit:

Jointly Owned

Program?

No

Justification

What: Remove "no concentration" option.

Why: We would like to require students to choose a concentration.

What: Add "Individualized Concentration"

Why: To create something similar to the current no concentration but more flexible.

What: Add "Pure Math Concentration"

Why: Primarily to prepare graduate school-bound students.

Total Credits

Total credits: minimum 120

Required:

Registrar's Office Use Only - Program Code:

SC-BS-MATH

Registrar/IRR Use Only – Program CIP Code

Admission Requirements:

Admissions

University-wide admissions policies can be found in the <u>Undergraduate Admissions Policies</u> section of this catalog. To apply for this program, please complete the <u>George Mason University Admissions Application</u>.

Program-Specific

Policies:

Policies

Students must fulfill all Requirements for Bachelor's Degrees, including the Mason Core.

MATH 300 Introduction to Advanced Mathematics meets the writing intensive requirement for this major.

For policies governing all undergraduate programs, see AP.5 Undergraduate Policies.

Graduating seniors are required to have an exit interview.

Language Proficiency Recommendation

The department recommends proficiency in French, German, or Russian.

Course Recommendations and Policies

A maximum of 6 credits of grades below 2.00 in coursework designated MATH or STAT may be applied toward the major.

Students intending to enter graduate school in mathematics are strongly advised to take <u>MATH 315</u> Advanced Calculus I and <u>MATH 321</u> Abstract Algebra.

Students may not receive credit for both MATH 214 Elementary Differential Equations and MATH 216 Theory of Differential Equations; both MATH 213 Analytic Geometry and Calculus III and MATH 215 Analytic Geometry and Calculus III (Honors); both MATH 351 Probability and STAT 344 Probability and Statistics for Engineers and Scientists I; and both MATH 352 Statistics and STAT 354 Probability and Statistics for Engineers and Scientists II.

After receiving a grade of 'C' or better in one of the courses listed below on the left, students may not receive credit for the corresponding course on the right:

Course May Not Receive Credit for

<u>MATH 113</u> or <u>MATH 123</u> <u>MATH 105</u> or <u>MATH 108</u>

 MATH 351 or STAT 344
 MATH 110

 MATH 441
 MATH 111

MATH 125 MATH 112

Degree Requirements:

Students should refer to the <u>Admissions & Policies</u> tab for specific policies related to this program.

In addition to the mathematics core, science, and computational skills requirements, students **must may** select **one an optional** concentration **from: Individualized Concentration (INDC), Pure Mathematics (PURM), Actuarial in Actuarial** Mathematics (ACTM), Applied Mathematics (AMT), Data Science (DSCI), or Mathematical Statistics (MTHS).

Mathematics Core

3/30/23, 12:03 PM	SC-BS-MATH: Mathematics, BS	
MATH 114	Analytic Geometry and Calculus II	4
MATH 125	Discrete Mathematics I (Mason Core)	3
MATH 203	Linear Algebra	3
MATH 213	Analytic Geometry and Calculus III	3
or <u>MATH 215</u>	Analytic Geometry and Calculus III (Honors)	
MATH 214	Elementary Differential Equations	3
or <u>MATH 216</u>	Theory of Differential Equations	
MATH 300	Introduction to Advanced Mathematics 1	3
MATH 322	Advanced Linear Algebra	3
Total Credits		26
1 Fulfills the writing	intensive requirement.	
Science		
Select a one-year seq	uence of a laboratory science from the following courses:	8-9
Biology Sequence:		
BIOL 213	Cell Structure and Function	
Choose one from the	following:	
BIOL 300	BioDiversity	
BIOL 308	Foundations of Ecology and Evolution	
<u>BIOL 311</u>	General Genetics	
Chemistry Sequen	ce:	
<u>CHEM 211</u>	General Chemistry I (Mason Core)	
& <u>CHEM 213</u>	and General Chemistry Laboratory I (Mason Core)	
<u>CHEM 212</u>	General Chemistry II (Mason Core)	
& <u>CHEM 214</u>	and General Chemistry Laboratory II (Mason Core)	
Geology Sequence	:	
GEOL 101	Physical Geology (Mason Core)	
& <u>GEOL 103</u>	and Physical Geology Lab (Mason Core)	
GEOL 102	Historical Geology (Mason Core)	
& <u>GEOL 104</u>	and Historical Geology Laboratory (Mason Core)	
Physics Sequence:		
PHYS 160	University Physics I (Mason Core)	
& <u>PHYS 161</u>	and University Physics I Laboratory (Mason Core)	
PHYS 260	University Physics II (Mason Core)	
& <u>PHYS 261</u>	and University Physics II Laboratory (Mason Core)	
Total Credits		8-9
Computatio	nal Skills	
CS 112 Introduct	tion to Computer Programming <u>(Mason Core)</u>	4
Total Credits		4
		•

Individualized BS without Concentration (INDC)

Students who are not choosing a concentration in pure mathematics, applied mathematics, data In addition to the mathematics core, science, mathematical statistics, or actuarial science may choose an individualized concentration. The individualized concentration allows and computational skills requirements listed above, students to take coursework in a variety of fields. who are not choosing a concentration must complete the following coursework: Students should work closely with a mathematics advisor and have their individual degree plan approved no later than their junior year.

1Excluding MATH 400%7CCode.

20nly refers to courses acceptable for credit toward a natural science major. Consider courses from the following: BIOL 300-499, CHEM 300-499, GEOL 300-499, PHYS 300-499.

3Up to 3 credits in math 490%7CCode and 6 credits in math 491%7CCode can be applied to this requirement.

A total of 12 credits between MATH 490%7CCode and MATH 491%7CCode can be applied to this degree via this concentration option and any elective credits.

Traditional Mathematics

MATH 315	Advanced Calculus I	3
MATH 316	Advanced Calculus II	3
MATH 321	Abstract Algebra	3
or MATH 431	Topology	

Select 12 additional credits of MATH courses numbered above 300 1,3

12

Additional Science

Select additional science credits from one of the following options:

4-9

- 1. A second sequence from the choices under "Science" above
- 2. 6 credits from more advanced courses in biology, chemistry, geology, or physics 2
- 3. The 4-credit option of PHYS 262 and PHYS 263
- 4. Choose two courses from the following:

CDC 220	Madaling and Cimulation I
CD3 Z30	Wodeling and Simulation 1

CDS 301 Scientific Information and Data Visualization

CS 211 Object-Oriented Programming

CS 310 Data Structures

CS 330 Formal Methods and Models

CS 483 Analysis of Algorithms

Total Credits 0

Required Courses

MATH 315 Advanced Calculus I 3

Select two from the following:

MATH 316 Advanced Calculus II

MATH 321 Abstract Algebra

MATH 421 Abstract Algebra II

MATH 431 Topology

MATH 432 Differential Geometry

3/30/23, 12:03 PM	SC-BS-MATH: Mathematics, I
MATH 433	Algebraic Geometry
MATH 464	Linear Algebra with Data Applications
MATH 465	Mathematics of Data Science
Electives	
Choose 12 additional up	per-level MATH-prefixed credits, not taken above.
Additional Science	
Select one option from	the following:
1. A second sequence	e from the choices under "Science" above

S 4-9

- 2. 6 credits from more advanced courses in biology, chemistry, geology, or physics 1
- 3. The 4-credit option of PHYS 262 and PHYS 263

Select two courses from the following:

6

CDS 230 Modeling and Simulation I

CDS 301 Scientific Information and Data Visualization

CS 211 Object-Oriented Programming

CS 310 Data Structures

CS 330 Formal Methods and Models

CS 483 Analysis of Algorithms

Total Credits 31-36

10nly refers to courses acceptable for credit toward a natural science major. Consider courses from the following: BIOL 300-499, CHEM 300-499, GEOL 300-499, PHYS 300-499.

Concentration in Pure Actuarial Mathematics (PURM)

Pure mathematics is the study of ideas and structures that underlie all of mathematics. (ACTM)This concentration provides exciting opportunities for students interested in advanced coursework in the fields traditionally referred to as "pure mathematics". studying actuarial mathematics. The concentration prepares students for a wide variety of careers involving mathematical thinking or graduate studies in pure mathematics.

Breadth Requirements

MATH 315	Advanced Calculus I	3
MATH 321	Abstract Algebra	3
MATH 411	Functions of a Complex Variable	3

MATH 312 Geometry **MATH 431 Topology**

Choose one from the following:

Depth Requirements

Select two from the following: 6

MATH 312 Geometry (if not chosen above)

MATH 316 Advanced Calculus II Discrete Mathematics II MATH 325

Abstract Algebra II MATH 421

MATH 431 Topology (if not chosen above)

Differential Geometry MATH 432

3

12

MATH 433 Algebraic Geometry

Additional Mathematics

Choose 3 credits of upper level MATH-prefixed credits

3

Additional Science

Select one option from the following:

4-9

- 1. A second sequence from the choices under "Science" above
- 2. 6 credits from more advanced courses in biology, chemistry, geology, or physics 1
- 3. The 4-credit option of PHYS 262 and PHYS 263

Total Credits 25-30

10nly refers to courses acceptable for credit toward a natural science major. Consider courses from the following: BIOL 300-499, CHEM 300-499, GEOL 300-499, PHYS 300-499.

Expertise in this field leads directly into a career as a practicing actuary with an insurance company, consulting firm, or in governmentemployment. Concentration in Actuarial Applied Mathematics (ACTM) (AMT)

This concentration provides exciting opportunities for students interested in **studying actuarial** taking additional classes on applied mathematics. Expertise in this field leads directly into a career as a practicing actuary with an insurance company, consulting firm, or in government employment.

ACTM Courses

MATH 351	Probability	3
MATH 352	Statistics	3
MATH 551	Regression and Time Series	3
MATH 554	Financial Mathematics	3
MATH 555	Actuarial Modeling I	3
MATH 557	Financial Derivatives	3
ACCT 203	Survey of Accounting	3
ECON 103	Contemporary Microeconomic Principles (Mason Core)	3
ECON 306	Intermediate Microeconomics 1	3
or <u>ECON 310</u>	Money and Banking	
or <u>FNAN 321</u>	Financial Institutions	
STAT 362	Introduction to Computer Statistical Packages	3
Select two from the following:		6
MATH 441	Deterministic Operations Research	
MATH 442	Stochastic Operations Research	
MATH 446	Numerical Analysis I	
MATH 453	Advanced Mathematical Statistics	
Total Credits		36

1For mathematics majors, the Department of Economics has agreed to waive the ECON 104 prerequisite.

Concentration in Applied Mathematics (AMT)

This concentration provides exciting opportunities for students interested in taking additional classes in applied mathematics. The concentration prepares students numerical analysts able to deal with real world applications in science and engineering, or to pursue graduate studies in applied mathematics. engineering.

AM	ΙT	Cοι	ırses
----	----	-----	-------

MAIH 313	Introduction to Applied Analysis	3
MATH 315	Advanced Calculus I	3
MATH 351	Probability	3
MATH 413	Modern Applied Mathematics I	3
MATH 446	Numerical Analysis I	3
Select 3 credits o	f MATH courses numbered above 300 1	3
Select two cours	es from the following:	6
MATH 314	Advanced Differential Equations	
MATH 414	Modern Applied Mathematics II	
MATH 478	Introduction to Partial Differential Equations with Numerical Methods	

Additional Science Courses

Select additional science credits from one of the following options:

4-9

- 1. A second sequence from the choices under "Science" above
- 2. Select 6 credits from more advanced courses in biology, chemistry, geology, or physics 2
- 3. The 4-credit option of PHYS 262 and PHYS 263
- 4. Select two courses from the following:
- CDS 230 Modeling and Simulation I
- CDS 301 Scientific Information and Data Visualization
- CS 211 Object-Oriented Programming
- CS 310 Data Structures
- CS 330 Formal Methods and Models
- CS 483 Analysis of Algorithms

Total Credits 28-33

1Excluding MATH 400.

20nly refers to courses acceptable for credit toward a natural science major. Consider courses from the following: BIOL 300-499, CHEM 300-499, GEOL 300-499, PHYS 300-499.

Concentration in Data Science (DSCI)

The data science concentration prepares math majors for careers in industry and academia with a focus on the rapidly developing area of the mathematics of data science. Students in this program will develop analytical and computational skills that will provide a deeper understanding of machine learning and data science concepts. By mastering the theoretical foundation underlying practical algorithms and uncovering inherent connections with several branches of modern mathematics, students will hone their creativity and independent thinking skills necessary to lead the data science revolution.

Data Science Courses

& CHEM 213 and General Chemistry Laboratory I (Mason Core)

GEOL 101 Physical Geology (Mason Core)

and Physical Geology Lab (Mason Core) & GEOL 103

PHYS 160 University Physics I (Mason Core)

& PHYS 161 and University Physics I Laboratory (Mason Core)

2. 3 credits from more advanced courses in biology, chemistry, geology, or physics 1

3. The 4 credit option of PHYS 262 and PHYS 263

Total Credits 27-29

10nly refers to courses acceptable for credit toward a natural science major. Consider courses from the following: BIOL 300-499, CHEM 300-499, GEOL 300-499, PHYS 300-499.

Concentration in Mathematical Statistics (MTHS)

This concentration provides exciting opportunities for students interested in taking additional classes on statistics and data analysis. The concentration prepares data analysts able to deal with real world applications in science and engineering.

MTHS Courses

MATH 315 Advanced Calculus I 3 **MATH 351 Probability** 3

CDS 301 Scientific Information and Data Visualization

CS 211 Object-Oriented Programming

CS 310 Data Structures

<u>CS 330</u> Formal Methods and Models

CS 483 Analysis of Algorithms

Total Credits 30-31

10nly refers to courses acceptable for credit toward a natural science major. Consider courses from the following: BIOL 300-499, CHEM 300-499, GEOL 300-499, PHYS 300-499.

Retroactive Requirements Updates: Plan of Study:

Honors Information:

Honors in the Major

Eligibility

Mathematics majors who have maintained a GPA of at least 3.50 in mathematics courses and a GPA of 3.50 in all courses taken at George Mason University may apply to the departmental honors program upon completion of two MATH courses at the 300+ level (excluding MATH 400 History of Math (Topic Varies) (Mason Core)), at least one of which has MATH 300 Introduction to Advanced Mathematics as a prerequisite. Admission to the program will be monitored by the undergraduate committee.

Honors Requirements

To graduate with honors in mathematics, a student is required to maintain a minimum GPA of 3.50 in mathematics courses and successfully complete MATH 405 Honors Thesis in Mathematics I and MATH 406 RS: Honors Thesis in Mathematics II with an average GPA of at least 3.50 in these two courses.

Program Outcomes

Additional Program Information

This information is required by the Office of Accreditation and Program Integrity.

Courses offered via distance (if applicable):

What is the primary delivery format for the

program?

Face-to-Face Only

Does any portion of this program occur off-campus?

No

Are you working with a vendor / other collaborators to offer your program?

No

Related

Departments

Could this program prepare students for any type of professional licensure, in Virginia or elsewhere?

No

Are you adding or removing a licensure component?

No

Additional SCHEV & SACSCOC Information

Is this change a simple retitling of an existing program, with no other changes, to any existing program content, curriculum requirements, etc?

No

Does this change represent a repackaging of content in an existing approved degree/certificate program at the same instructional level (i.e., baccalaureate, master's, or doctoral)?

No

Percentage of total credits containing new course content. ("New course content" is defined by SACSCOC as content that is not currently included in an existing approved degree/certificate program at the same instructiona level. Do not exclude gen ed credits in calculations for undergraduate programs.)

0%-24%

Does this change include the addition of a distance education or face-to-face method of delivery for this program?

No

Does this change include the addition of a course/credit-based competency-based education delivery option?

No

Will any additional equipment/facilities be needed?

No

Will any additional faculty be required?

No

Will any additional financial resources be needed?

No

Additional library/learning resources needed?

No

OAPI Use Only – Determination of SACSCOC Impact

Comments or Notes

Green Leaf Program Designation

Is this a Green Leaf

No

program?

Does this program cover material which crosses into another department?

No

Additional Attachments

UGC-COS-Program Mod BS Math.pdf

UGC-COS-Program-Mod-bsmath_001.pdf

BS_in_math_modification_ProgramApprovalForm_COSCC-

2_ACTUARIAL.pdf

SCHEV Proposal

Executive Summary

Reviewer Comments

Additional Comments

Is this course required of all students in this degree program?

%wi_required.eschtml%

Key: 587