

For instructions: http://registrar.gmu.edu/facultystaff/catalogrevisions/course/

| Modify (check all that apply b                                                             |                                                                                                                                                                 | Prereg/coreg                                  | Grade Mode                                                                     |                                                                                         |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Credits                                                                                    | Schedule Type                                                                                                                                                   |                                               | Other:                                                                         |                                                                                         |
| College/School:         College o           Submitted by:         Linda Hin                |                                                                                                                                                                 | Department:AtmoExt:3-3082                     | spheric, Oceanic, a Email: Ihinn                                               | nd Earth Sciences<br>nov@gmu.edu                                                        |
| Subject Code: GEOL<br>(Do not list multiple codes or numbers<br>have a separate form.)     | Number: 535<br>5. Each course proposal must                                                                                                                     | X                                             | Fall<br>Spring Y <i>ear</i><br>Summer                                          | 2017                                                                                    |
| Title: Current Banner (30 characters max w/<br>New Quantitative                            |                                                                                                                                                                 | c                                             | Is Mason Core Reautries<br>urrently fulfills requires<br>ubmission in progress | ment                                                                                    |
| Credits:       X       Fixed →         (check one)       Variable →         Lec + Lab/Rct→ | 3         Repeat St           to         (check one)           0         or                                                                                     | Repeatable                                    | ble (NR)<br>within degree (RD) →<br>within term (RT) →                         | Max credits allowed:<br>(required for RT/RD status only)                                |
| (check one) Satisfacto                                                                     | A, B, C, etc.)<br>ry/No Credit (check one)<br>, B C, etc. +IP) LEC can include I<br>linked sections with                                                        | LAB or RCT if Lab (LAB)                       | (RCT) Sem                                                                      | pendent Study (IND)<br>inar (SEM)<br>io (STU)                                           |
| Prerequisite(s)(NOTE: hard-coding requ                                                     | uires separate Prereq Checking form; see above website)                                                                                                         |                                               | Corequisite(s):                                                                |                                                                                         |
| MATH 114 and STAT 250, or                                                                  | equivalent; or permission of inst                                                                                                                               | ructor.                                       |                                                                                |                                                                                         |
| Restrictions Enforced by Sy                                                                | stem: Major, College, Degree, F                                                                                                                                 | Program, etc. Include Cod                     | YES, co                                                                        | cies (check only as applicable):<br>urse is 100% equivalent to<br>urse renumbered to or |
| catalog Copy (Consult University)                                                          | sity Catalog for models)                                                                                                                                        |                                               |                                                                                |                                                                                         |
|                                                                                            | ords, use verb phrases and present                                                                                                                              |                                               | Notes (List additiona                                                          | al information for the course)                                                          |
| sequence of geological events re<br>interpolation and error analysis                       | anch of geology that applies statistic<br>ecorded in sedimentary strata. Cours<br>used for defining stratigraphic boun<br>d chronostratigraphy, and intercalibu | e examines methods of daries and events; time |                                                                                |                                                                                         |
|                                                                                            | constrained optimization, ranking an                                                                                                                            |                                               |                                                                                |                                                                                         |
| Indicate number of contact ho<br>When Offered: (check all that a                           |                                                                                                                                                                 | minar per week:<br>Spring                     | Hours of Lab of                                                                | r Studio:                                                                               |
| Approval Signatures                                                                        |                                                                                                                                                                 |                                               |                                                                                |                                                                                         |
| Department Approval                                                                        | Date                                                                                                                                                            | College/School Approv                         | al                                                                             | Date                                                                                    |
| If this course includes subject n                                                          | natter currently dealt with by any o                                                                                                                            | ther units, the originating de                | epartment must circula                                                         |                                                                                         |
| those units and obtain the necessa<br>Unit Name                                            | ary signatures prior to submission. Fa                                                                                                                          | ailure to do so will delay actio              |                                                                                | Date                                                                                    |
|                                                                                            |                                                                                                                                                                 | Sint Approver 5 Sign                          |                                                                                | Date                                                                                    |

#### **Undergraduate or Graduate Council Approval**

# Course Proposal Submitted to the College of Science Curriculum Committee (COSCC)

The form above is processed by the Office of the University Registrar. This second page is for the COSCC's reference. Please complete the applicable portions of this page to clearly communicate what the form above is requesting.

#### FOR ALL COURSES (required)

Course Number and Title: GEOL 535 – QUANTITATIVE STRATIGRAPHY

Date of Departmental Approval:

#### FOR NEW COURSES (required if creating a new course)

- Reason for the New Course: Graduate students involved in paleoclimate and paleontologic research require training in quantitative methods that have been developed for stratigraphy. Relationship to Existing Programs: This proposed course also contributes to the Climate Dynamics PhD and Earth System Science Master's programs as an appropriate elective course.
- Relationship to Existing Courses: This course complements GEOL532-Paleoclimatology, GEOL565CLIM769-Paleoceanography and GEOL534-Vertebrate Paleontology with its focus on quantitative methods used in paleoclimatic and paleontological research.
- Semester of Initial Offering: Spring 2017
- Proposed Instructors: Linda Hinnov

### SYLLABUS GEOL 535 – QUANTITATIVE STRATIGRAPHY LINDA HINNOV, PROFESSOR OF GEOLOGY

**Catalog Description:** Quantitative stratigraphy is a branch of geology that applies statistics to reconstruct the time sequence of geological events recorded in sedimentary strata. Methods of interpolation and error analysis used for defining stratigraphic boundaries and events, time scale estimation using integrated chronostratigraphy, and intercalibration are examined. Students receive advanced training in graphic correlation, constrained optimization, ranking and scaling, and dynamic programming. Prerequisites: MATH 114, STAT 250; or permission of instructor [3 credits].

<u>Resources</u>: Agterberg, F. (2014), Geomathematics: Theoretical Foundations, Applications and Future Developments, Springer-Verlag, Cham; Guex, J., Galster, F., and Hammer,  $\emptyset$  (2016), Discrete Biochronological Time Scales, Springer-Verlag, Cham; Shaw, A.B. (1964), Graphic Correlation, J. Wiley and Sons; and other publications and software (see ACTIVITY list in the syllabus).

<u>Requirements</u>: 14 assignments (50%) (see ACTIVITY list in the syllabus); independent project (50%) (students design and complete a project that solves a geological problem by applying course methodologies on original stratigraphic data).

Ethics: Consult http://oai.gmu.edu/the-mason-honor-code-2/ for course policy.

### Student learning objectives:

#### Knowledge and Understanding

- Gain detailed knowledge about the geologic time scale and underlying geological information
- Understand the principal quantitative methods that are available for correlating geologic sequences

#### Analytical Skills and Abilities

- Develop the ability to assess the best method(s) for specific stratigraphic data that require sequencing.
- Develop advanced skills in digital filtering, spectrum estimation and hypothesis testing.

#### Professional Development

- Paleontologists will be able to apply modern techniques to sequence fossils for global correlation
- Geologists will be able to integrate diverse stratigraphic data to develop statistically constrained time scales

 $\underline{Syllabus}$ : half-time lecture, half-time hands-on student activity.

| DATE    | LECTURE                        | ACTIVITY                                                        |
|---------|--------------------------------|-----------------------------------------------------------------|
| Week 1  | Geochronology                  | Schmitz tutorial (U-Pb dating of zircons; age modeling)         |
| Week 2  | Geologic Time                  | TSCreator (design a geologic time scale and analyze events)     |
| Week 3  | Graphic Correlation            | SINECOR (correlate two sections together based on fossils)      |
| Week 4  | Ranking and Scaling            | RASC/CASC, QSCreator (use multiple sections to rank events)     |
| Week 5  | Unitary Associations           | PAST (assess presence/absence of fossils for correlation)       |
| Week 6  | Constrained Optimization       | CONOP, CONMAN (optimized seriation of stratigraphy)             |
| Week 7  | Horizon Annealing              | HA (simulated annealing methods for fossil correlation)         |
| Week 8  | Ordination                     | prcomp (fossil ordination by principal components analysis)     |
| Week 9  | Automated Correlation          | MATCH (stratigraphic data matching by linear programming)       |
| Week 10 | Signal Processing I            | MATLAB (time series analysis of stratigraphic data)             |
| Week 11 | Signal Processing II           | astrochron (advanced modeling of stratigraphic data)            |
| Week 12 | Radiocarbon                    | Bacon, Oxcal (Calendar dates and reservoir corrections)         |
| Week 13 | Bayesian Intercalibration      | BCHRON (Uncertainty models for geologic time scales)            |
| Week 14 | Integrated geologic timescales | TSCreator redux (Time scales for critical geological intervals) |

See next page for Mason Policies.

# **Some Important Mason Policies**

Updated Spring 2016

## **Electronic Communications**

Students must use their MasonLive email account to receive important University information, including communications related to this class.

## **Disability Accommodations**

If you have a documented learning disability or other condition that may affect academic performance you should: 1) make sure this documentation is on file with **Office of Disability Services** to determine the accommodations you need; and 2) talk with me to discuss your accommodation needs.

Office of Disability Services: http://ods.gmu.edu

## **Academic Integrity**

The integrity of the University community is affected by the individual choices made by each of us. Mason has an Honor Code with clear guidelines regarding academic integrity. Three fundamental and rather simple principles to follow at all times are that: (1) all work submitted be your own; (2) when using the work or ideas of others, including fellow students, give full credit through accurate citations; and (3) if you are uncertain about the ground rules on a particular assignment, ask for clarification. No grade is important enough to justify academic misconduct. Plagiarism means using the exact words, opinions, or factual information from another person without giving the person credit. Writers give credit through accepted documentation styles, such as parenthetical citation, footnotes, or endnotes. Paraphrased material must also be cited, using MLA or APA format. A simple listing of books or articles is not sufficient. Plagiarism is the equivalent of intellectual robbery and cannot be tolerated in the academic setting. If you have any doubts about what constitutes plagiarism, please see me.

Office of Academic Integrity: <u>http://oai.gmu.edu/</u> Honor Code: <u>http://oai.gmu.edu/the-mason-honor-</u> <u>code-2/</u>

## **Mason Diversity Statement**

George Mason University promotes a living and learning environment for outstanding growth and productivity among its students, faculty and staff. Through its curriculum, programs, policies, procedures, services and resources, Mason strives to maintain a quality environment for work, study and personal growth.

An emphasis upon diversity and inclusion throughout the campus community is essential to achieve these goals. Diversity is broadly defined to include such characteristics as, but not limited to, race, ethnicity, gender, religion, age, disability, and sexual orientation. Diversity also entails different viewpoints, philosophies, and perspectives. Attention to these aspects of diversity will help promote a culture of inclusion and belonging, and an environment where diverse opinions, backgrounds and practices have the opportunity to be voiced, heard and respected.

The reflection of Mason's commitment to diversity and inclusion goes beyond policies and procedures to focus on behavior at the individual, group and organizational level. The implementation of this commitment to diversity and inclusion is found in all settings, including individual work units and groups, student organizations and groups, and classroom settings; it is also found with the delivery of services and activities, including, but not limited to, curriculum, teaching, events, advising, research, service, and community outreach.

Acknowledging that the attainment of diversity and inclusion are dynamic and continuous processes, and that the larger societal setting has an evolving socio-cultural understanding of diversity and inclusion, Mason seeks to continuously improve its environment. To this end, the University promotes continuous monitoring and self-assessment regarding diversity. The aim is to incorporate diversity and inclusion within the philosophies and actions of the individual, group and organization, and to make improvements as needed.