Course Approval Form

Action Requested:
- [x] Create new course
- [] Inactivate existing course
- [] Modify existing course (check all that apply)

Course Level:
- [x] Undergraduate
- [] Graduate

College/School:
- College of Science

Department:
- CDS

Subject Code:
- CDS

Number:
- 230

Effective Term:
- [x] Fall
- Spring
- Summer

Fulfills Mason Core Req? (undergrad only):
- [] Currently fulfills requirement
- [] Submission in progress

College/School:
- College of Science

Department:
- CDS

Submitted by:
- D. Papaconstantopoulos

Ext:
- 3-3624

Email:
-

Title:
- [] Current
- [] New

Banner (30 characters max w/ spaces):
- Modeling and Simulation I

Modeling and Simulation I
- [] Fixed
- [] Variable

Credits:
- [x] 3

Repeat Status:
- [x] Not Repeatable (NR)
- [] Repeatable within degree (RD)
- [] Repeatable within term (RT)

Grade Mode:
- [x] Regular (A, B, C, etc.)
- [] Satisfactory/No Credit
- [] Special (A, B C, etc. +IP)

Schedule Type:
- [x] Lecture (LEC)
- [] Lab (LAB)
- [] Recitation (RCT)
- [] Seminar (SEM)
- [] Studio (STU)

Restrictions Enforced by System:
- Major, College, Degree, Program, etc. (include code)

Equivalencies:
- [] YES, course is 100% equivalent to:
- [] YES, course is being renumbered to/will replace the following:

Catalog Copy for NEW Courses Only
- (Consult University Catalog for models)

Description:
- This course expands upon the foundation provided by CDS 130. Fundamental computational modeling techniques are used in a variety of disciplines with special emphasis on biological systems. Continued development of algorithmic thinking skills will be done using different computational environments.

Indicate number of contact hours:
- [] Hours of Lecture or Seminar per week: 3
- [] Hours of Lab or Studio:

When Offered:
- [x] Fall
- [] Summer
- [x] Spring

Approval Signatures

For Graduate Courses Only

Graduate Council Member

Provost Office

Graduate Council Approval Date

For Registrar Office’s Use Only:

Banner_____________________________Catalog______________________________

revised 6/22/15
FOR ALL COURSES (required)
Course Number and Title: CDS 230 - Modeling and simulation I
Date of Departmental Approval: 9/3/2015

FOR INACTIVATED/REINSTATED COURSES

FOR MODIFIED COURSES

FOR NEW COURSES
- Reason for the New Course: To provide a continuation to CDS 130 and provide a necessary bridge to the CDS 300 and 400-level courses.
- Relationship to Existing Programs: A lower-level CDS course to satisfy the computational needs of students in other programs such as Biology and Neuroscience.
- Relationship to Existing Courses: Similar to CDS 130, but more advanced and a suitable prerequisite to CDS 411.
- Semester of Initial Offering: Fall 2016
- Proposed Instructor: TBA
Prerequisites: CDS 130, or permission of instructor

Credits: 3

Instructor: TBD
Office Hours: TBD

Course Description: This course presents fundamental computational techniques with an emphasis on biological informatics. This course emphasizes problem solving path from concept, through theory and finally into realization in a computational environment. Continued development of student’s algorithmic thinking skills will be emphasized through the use of three different computational environments.

Lecture Content:

1. Computations in a Spreadsheet
 a. Data types and cells
 b. Alternate formats (CSV, text)
 c. Simple computations
 d. Computations spanning multiple pages
 e. Queries
 f. Data visualization (plotting)
 g. Function estimation
 h. Applications in micro-array data
 i. Shortcomings of spreadsheets

2. Introduction to Sequential Scripting (Python)
 a. Data types
 b. Data collections
 c. Strings and searches
 d. Input and output
e. Loops (while loops, for loops, etc.)
f. Decisions (if constructs)
g. Functions
h. Error handling
i. Applications in sequence analysis
j. Object Oriented Programming

3. Introduction to Databases
 a. Justification
 b. Schema design
c. Data duplications
d. Simple queries
e. Complex queries and JOINS
f. Connection with Python
g. Applications in multiple domain biological data
h. Efficiency in queries

Homework: Students will be expected to complete weekly assignments and two projects.
Exams: There will be one final exam.
Evaluation: Homework (30%), Project I (20%), Project II (20%), Final Exam (30%)
Required Textbooks: Instructor provided

RATIONALE FOR NEW COURSE

The intent of this course is to provide students with insights on the process that carries an idea through algorithm development and finally into realization through a computational implementation. Students will use three different types of environments that are heavily used in biological analysis: spreadsheets, a programming language and a database environment.

Students will be required to write short computer programming scripts in this course. The second project will require the use of these rudimentary skills.

By the end of the course the student should be able to design and implement a simple pipeline that starts with digitized data and the concept of which analysis is needed and end with a functioning tool that completes the analysis.