

For approval of new courses and deletions or modifications to an existing course.

More information is located on page 2.

Action Requested: X Create new course Delete existing course Modify existing course (check all that apply) Title Credits Repeat Status Prereq/coreq Schedule Type Restrictions	Course Level: X Undergraduate Graduate Grade Type
College/School: College of Science Submitted by: Andrea Weeks	Department: Biology Program Ext: 3-1031 Email: Aweeks3@gmu.edu
Subject Code: BIOL Number: 310 (Do not list multiple codes or numbers. Each course proposal must have a separate form.)	Effective Term: X Fall Spring Year 2011 Summer
Title: Current Biodiversity	
Banner (30 characters max including spaces)	
New	
Credits:XFixedorRepeat Status: (check one)(check one)Variableto(check one)	X Not Repeatable (NR) Repeatable within degree (RD) Total repeatable Repeatable within term (RT) credits allowed:
Grade Mode: Regular (A, B, C, etc.) Schedule (check one) Satisfactory/No Credit Type Code(s (check all that apply))	X Lecture (LEC) Independent Study (IND) X Lab (LAB) Seminar (SEM) X Recitation (RCT) Studio (STU) Internship (INT) Internship (INT)
Prerequisite(s):	Corequisite(s):
BIOL213, 214 and 311, or permission of instructor	
Special Instructions: (restrictions for major, college, or degree; of	cross-listed courses; hard-coding; etc.)

Catalog Copy for NEW Courses Only (Consult University Catalog for models)

Description (No more than 60 words, u	se verb phrases and present tense)	Notes (List additi	onal information for the course)		
Explores the fundamental princi	ples governing organismal					
biology while introducing the thr	ee domains of life: the					
Saturday or Sunday field trips a	re required					
Saturday of Sunday field trips a	re required.					
				Γ	1	<u> </u>
Indicate number of contact hours:	Hours of Lecture or Seminar pe	er week:	3	Hours of Lab or Studio:	3	Hours of recitation = 1
When Offered: (check all that apply)	X Fall X Summer X Sp	oring		1	J	1.

Approval Signatures

			Date	_
Linit Namo	Unit Approval Namo	Unit Approvor's Signaturo	Dato	7
If this course includes subject matter currently dealt with by any other units, the originating department must circulate this proposal for review by those units and obtain the necessary signatures prior to submission. Failure to do so will delay action on this proposal.				
Department Approval	Date	College/School Approval	Date	_

For Graduate Courses Only

Course Proposal Submitted to the Graduate Council by The College of Science

1. COURSE NUMBER AND TITLE: BIOL 310: Biodiversity

Course Prerequisites: BIOL 213, BIOL 214, and BIOL 311, or permission of instructor

<u>Catalog Description</u>: Explores the fundamental principles governing organismal biology while introducing the three domains of life: the Archaea, the Bacteria, the Eukaryotes, plus viruses. Two Saturday field trips are required.

2. COURSE JUSTIFICATION:

<u>Course Objectives</u>: By the end of the course, students will be able to illustrate the following fundamental principles of organismal biology with examples from all domains of life: 1) Organismal structure is a functional response to a set of external constraints that is canalized by common ancestry; 2) Biodiversity has been generated or radically altered as a consequence of abiotic pressures and biotic interactions, including all forms of genetic exchange (conjugation to introgression), organismal symbioses (organellar endosymbioses to plant/pollinator interactions) and the indirect actions of other organisms on the abiotic environment (the oxygen revolution to the Industrial Revolution); 3) Increasing complexity in organisms overall is neither inevitable nor necessarily the optimal outcome, which make terms such as "advanced" and "primitive" value-free (e.g., the persistence of "primitive" bacteria in all ecosystems, the liability of our appendix in our "advanced" digestive tract). Topics are presented roughly in order of their chronological appearance in the geological history of life.

<u>Course Necessity</u>: This course will become part of the new core curriculum in Biology and will replace BIOL 303 Animal Biology and BIOL 304 Plant Biology.

<u>Course Relationship to Existing Programs</u>: This course will replace BIOL 303 and BIOL 304 in all programs, including Biology B.S. and B.A. degrees.

Course Relationship to Existing Courses: None.

3. <u>APPROVAL HISTORY</u>:

4. <u>SCHEDULING AND PROPOSED INSTRUCTORS</u>:

Semester of Initial Offering: Fall 2011

<u>Proposed Instructors</u>: Drs. Andrea Weeks, Dr. Geoffrey Birchard, Dr. James Lawrey and Dr. Al Torzilli

5. <u>TENTATIVE SYLLABUS</u>: See attached.

BIOL 310 - Biodiversity

Credits: 5

Lecture: MWF 10:30-11:20 am Laboratory: 2hr 45 min/wk (multiple sections of 24) Recitation: 50 min/wk (multiple sections of 24). Prerequisites: BIOL 213, BIOL 214, BIOL 311 Required texts: Lecture: Life 9th Edition. Sadava, D., D.M. Hillis, H.C. Heller, and M.R. Berenbaum. Sinauer Associates, Inc. [Recommended <u>The history of life</u> (2009), Benton, M. Oxford University Press]

Lab: <u>Custom Lab Manual from GMU</u>

Recitation: <u>Custom Reading Packet from GMU</u>, <u>Sustaining Life</u>. Chivian, E. and A. Bernstein (eds.). Oxford University Press.

Course Goal/Objectives: Biodiversity educates students about the fundamental principles governing organismal biology while introducing them to the three domains of life: the Archaea, the Bacteria, the Eukarya, plus viruses. Three main principals are emphasized throughout the course. Firstly, organismal structure is a functional response to a set of external constraints but is canalized by common ancestry. Secondly, biodiversity has been generated or radically altered as a consequence of abiotic pressures and biotic interactions, including all forms of genetic exchange (conjugation to introgression), organismal symbioses (organellar endosymbioses to plant/pollinator interactions), and the indirect actions of other organisms on the abiotic environment (the oxygen revolution to the Industrial Revolution). Lastly, increasing complexity in organisms overall is neither inevitable nor necessarily the optimal outcome, which make terms such as "advanced" and "primitive" value-free (e.g., the persistence of "primitive" bacteria in all ecosystems, the liability of our appendix in our "advanced" digestive tract). Topics are presented roughly in order of their chronological appearance in the geological history of life.

Grading:

· · · · · · · · · · · · · · · · · · ·	
Recitation participation	2%
Pre-recitation write-ups	8%
Lab write-ups (14)	15%
Pre-lab write-ups (12)	10%
Cumulative final exam	15%
Lecture exams (3)	45%
I-Clicker questions (every lecture)	5%

100%

Final letter grades are assigned using the standard percentage divisions (e.g. A \ge 90%; rounded to the first decimal place). Plus/minus distinctions (e.g. A+ \ge 97%, A- \le 93%) are made except for C- and D grades.

Lecture: Lecture is divided into thirds reflecting an overview of the chemical and physical constraints to life and early organismal diversity (Wks 1-4), the implications of shifts to multicellularity in the major eukaryotic lineages (Wks 5-8) and the diversification of terrestrial plants, fungi and animals, including humans (Wks 9-14) (Table 1).

Theme	week	reading	topic
Terraforming	1	1, 25;	Physical and chemical limitations to life on Earth.
			The geological timeline and definition of life
	2	17.2; 26;	The first 2.5 billion years of (prokaryotic) life:
		51.1; 58.1	genomic and geochemical revolution
	3		The last billion years of prokaryotic life, including
			extant lineages. Where are they now?
	4	27; 17.3	Transition to eukaryotic condition; rooting the
			Tree of Life and the protists
Living Together	5	32.1; 43	Sex and specialization: problems and opportunities
			associated with the transition to multicellularity
	6	28.1; 30.1;	
		39.3-39.4	The transition in plants, fungi.
	7	32.1-32.2;	
		33.1-33.2;	
		40.1; 41.1;	
		49.1-49.2;	The transition in animals.
	8	33.3; 48.3	Cambrian explosion; skeletons and accelerated
			biotic interactions; fish.
Local Optima	9	28.2-28.4;	
		29;	Terrestrial revolution was led by plants.
	10	30.2-30.4;	
		39.1-39.2;	Plant evolution was facilitated by fungi and animals
		56.1-56.3	interactions, which persist today.
	11	31.3-31.5;	Terrestrial evolution of animals was driven by the
		40;	same abiotic constraints encountered by plants.
	12	50.1-50.2;	
		51.3; 56.1-	Drive to optimize water-balance, nutrition and
		56.3	reproduction leads to animal radiations, symbioses.
	13	17.4; 43.3;	Origin and evolution of the human animal and its
		44.5	associated biota.
	14	59; 18.6	Future of biodiversity

Table 1. Lecture schedule

Laboratory: The goal of lab is two-fold: to engage students in active investigation of the pleisiomorphic and synapomorphic characteristics of major clades (Table 2) and to train students to conduct experiments. To this end, most labs will have an 1) experimental component

whereby a model organism from the focus clade is manipulated to explore some a) universal biological structure or function, b) essential skill or technique, and/or c) the suite of synapomorphies for that particular clade and 2) organismal "survey" type activities.

week	Survey	Activity
1	Archaea	Halobacterium experiment set up
2	Bacteria	Lab 1 data collection; Phage-finding using Mycobacterium
		<i>smegmatis</i> set up
3	Protists	Lab 2 data collection; <i>Dictyostelium</i> Chemotaxis Experiment
4	Non-vascular plants	Algal photosynthetic performance experiment; C-Fern Set up
5	Vascular Plants I	C-Fern data collection; Plant water relations and gas exchange
		lab
6	Vascular Plants II	C-Fern data collection; Plant taxis and hormonal response lab
7	Vascular Plants III	Photosynthetic anatomy/physiology lab
8	Plants	US Botanical Garden/NMNH Pollinator exhibit
9	Fungi	Pilobolus development experiment set up
10	Protostomes I	Lab 9 data collection; Sea urchin reproduction laboratory
11	Protostomes II	Metabolic scaling lab. <i>Tribolium</i> growth experiment set up
12	Animals	National Zoological Park
13	Deuterostomes I	Collect data from Lab 11; Fish dissection
14	Deuterostomes II	Urine output lab

Table 2. Laboratory session schedule.

Recitation: The goal of recitation is two-fold: to review and build on knowledge gained in lecture and to support skill-building activities directly related to on-going laboratory projects, such as statistical testing and graphing.

week	Торіс
1	Sustaining Life Ch. 1 What is Biodiversity
2	Scientific data reporting and presentation
3	How to read a scientific paper
4	Determining statistical significance of results
5	Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex,
	multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes
	Paleobiology (2000) 26(3): 386-404
6	Molecular Evidence for the Early Colonization of Land by Fungi and Plants Science
	(2001) 293 (5532): 1129-1133
7	The last common bilaterian ancestor Development (2002) 129: 3021-3032.
8	Molecular Clocks Do Not Support the Cambrian Explosion Molecular Biology and
	Evolution (2005) 22 (3): 387-390.
9	Sustaining Life Ch. 3 Ecosystem Services
10	Sustaining Life Ch. 4 Medicines from nature

11	Sustaining Life Ch. 8 & 9 Biodiversity, food production and farming
12	Sustaining Life Ch. 5 Biodiversity and medical research
13	Sustaining Life Ch. 6 Organisms valuable to medicine
14	Sustaining Life Ch. 7 Ecosystem disturbance, biodiversity, infectious diseases