

Course Approval Form

For approval of new courses and deletions or modifications to an existing course.

registrar.gmu.edu/facultystaff/curriculum

Action Requested: X Create new course Delete exist Modify existing course (check all that apply) Title Credits Prereq/coreq Schedule Type Other:	sting course Repeat Status Restrictions		Grade Typ		Sourse L X Under Gradu	graduate
College/School: COS		Depart	ment: 「	SPACS		
Submitted by: Krishnamurthy V. Vemuru	l	Ext:	35121		Email:	kvemuru@gmu.edu
Subject Code: PHYS Number:	332 osal must	Effective	e Term:	x Fall Spring Summ		Yea r 2014
Title: Current						
Banner (30 characters max including spac	es)					
New Solar Cells						
Credits: x Fixed 3 (check one) Variable to	Repeat Status: (check one)	Re	t Repeatable peatable with peatable with	hin dégree		aximum credits
Grade Mode: x Regular (A, B, C, etc.) (check one) Satisfactory/No Credit Special (A, B C, etc. +IP)	Schedule Type Code(s (check all that apply)	s):	Lecture (LE Lab (LAB) Recitation (F Internship (I	, RCT)	Ser	ependent Study (IND) ninar (SEM) dio (STU)
Prerequisite(s):	Corequisite(s):				Ins	tructional Mode:
PHYS262 and PHYS263 or PHYS245 and PHYS246					E F	00% face-to-face lybrid: ≤ 50% electronically delivered 00% electronically delivered
Special Instructions: (list restrictions for major Satisfies the materials science course require				program	Y	there equivalent course(s)? /es <u>x</u> No s, please list

Catalog Copy for NEW Courses Only (Consult University Catalog for models)

Description (No more than 60 words, use verb phrases and present tense)	Notes (List additional information for the course)				
Covers the physics of solar cells, basics of semiconductors, <i>pn</i> junctions, basic structure of solar cells, the latest advances in solar cell materials, and concepts for improving the efficiency of solar cells. Solar cell design based on silicon, copper indium gallium selenide, gallium arsenide, organic solar cells, dye-sensitized solar cells, quantum dots, and nanowires will also be reviewed.					
Indicate number of contact hours: Hours of Lecture or Seminar per week: 3 Hours of Lab or Studio: When Offered: (check all that apply) x Fall Summer x Spring					

Approval Signatures

Department Approval	Date	College/School Approval

If this course includes subject matter currently dealt with by any other units, the originating department must circulate this proposal for review by those units and obtain the necessary signatures prior to submission. Failure to do so will delay action on this proposal.

Unit Name	Unit Approval Name	Unit Approver's Signature	Date

For Graduate Courses Only

Graduate Council Member

Provost Office

Graduate Council Approval Date

For Registrar Office's Use Only: Banner_____Catalog____

revised 2/2/10

Course Proposal Submitted to the Curriculum Committee of the College of Science

1. <u>COURSE NUMBER AND TITLE</u>: PHYS 332: Solar Cells

Course Prerequisites: PHYS 262 and 263, or PHYS 245 and 246

Catalog Description:

Covers the physics of solar cells, basics of semiconductors, pn junctions, basic structure of solar cells, the latest advances in solar cell materials, and concepts for improving the efficiency of solar cells. Solar cell design based on silicon, copper indium gallium selenide, gallium arsenide, organic solar cells, dye-sensitized solar cells, quantum dots, and nanowires will also be reviewed.

2. <u>COURSE JUSTIFICATION</u>: Upper division course that satisfies renewable energy minor materials science requirement

Course Objectives:

The physics of solar cells Materials and methods used in the manufacturing of the four generations of solar cells Compare the energy conversion efficiencies of different types of solar cells Compare cost effectiveness of different types of solar cells Solar cell manufacturing companies and career outlook

Course Necessity:

Only the second course that satisfies renewable energy minor materials science requirement

Course Relationship to Existing Programs:

Satisfies renewable energy minor materials science requirement

Course Relationship to Existing Courses:

None; course taught as PHYS 390 special topics in Fall 2013

3. <u>APPROVAL HISTORY</u>:

4. SCHEDULING AND PROPOSED INSTRUCTORS:

Semester of Initial Offering: Fall 2014

<u>Proposed Instructors</u>: Krishnamurthy V. Vemuru

5. <u>TENTATIVE SYLLABUS</u>: See attached.

Description

Solar cells are used to generate electricity from the Sun. The goal of this course is to cover the physics of the solar cells such as the importance of renewable energy sources in future economy, the principle of operation of solar cells, the basics of semiconductors, *pn* junctions, *pin* junctions, conversion of thermal radiation into chemical energy, conversion of chemical energy into electrical energy, basic structure of solar cells, the latest advances in solar cell materials and technologies, and concepts for improving the efficiency of solar cells. The four generations of solar cells covering silicon, cadmium telluride, copper indium gallium selenide, gallium arsenide, organic solar cells, dye-sensitized solar cells, quantum dots, and nanowires will also be reviewed. Some recent research on solar cell physics from selected journal articles will also be reviewed.

Learning Goals

- The physics of solar cells
- Materials and methods used in the manufacturing of the four generations of solar cells
- Compare the energy conversion efficiencies of different types of solar cells
- Compare cost effectiveness of different types of solar cells
- Solar cell manufacturing companies and career outlook

Textbook: Solar Cells, Materials, Manufacture, and Operations, Second Edition, Augustin McEvoy, L. Castner, Tom Markvart, (Elsevier, 2013).

Additional Reference: The Physics of Solar Cells, Jenny Nelson (Imperial College Press, 2003). Prerequisites: PHYS262 and PHYS263 or PHYS245, PHYS246, and the permission of the instructor. Lectures: Class meets on Tuesdays and Thursdays: 9 to 10:15 AM in 207, Innovation Hall. Instructor: Krishnamurthy V. Vemuru Office: 201 B Planetary Hall, Office Hours: WF 1:30 to 2:30 pm or by Appointment Phone: 703-993-5121, Email: kvemuru@gmu.edu Grading: 15 assignments x 5 points = 75 points Final Exam (5 problems, which may also include conceptual or descriptive questions) x 5 points = 25 points Final Exam: December 12, 8:45 to 10:15 AM

Letter grades: A+: 95-100%, A: 90 – 94%, A-: 85-89%, B+: 80 to 84%, B: 75 to 79%, C+: 70 to 74%,

C: 65 to 69%, D: 60 to 64%, and F: 0-59%