

Course Approval Form

For approval of new courses and deletions or modifications to an existing course.

registrar.gmu.edu/facultystaff/curriculum

Action Requested: X Create new course Modify existing course (check all Title Prereq/coreq Schedule Other:	Delete existing course that apply) Repeat Status e Type Restrictions	Course Level: X Undergradua Graduate	te			
College/School:College of ScierSubmitted by:Long Chiu	nces	Department:Atmospheric, Oceanic, andExt:993-1984Email:Ichiud	nd Earth Sciences @gmu.edu			
Subject Code: CLIM Number: 309 Effective Term: Fall (Do not list multiple codes or numbers. Each course proposal must X Spring Year 2014 have a separate form.) Summer Summer						
Title: Current Introduction to At Banner (30 characters max inclu- New	mospheric Thermodynamics uding spaces)					
Credits:XFixed3(check one)Variableto	Repeat Status: (check one)	X Not Repeatable (NR) Repeatable within degree (RD) Maximum Repeatable within term (RT) allowed:	credits			
Grade Mode: X Regular (A, B, C, (check one) Satisfactory/No C Special (A, B C, c)	, etc.) Schedule Credit Type Code(s etc. +IP) (check all that apply)	X Lecture (LEC) Independe Lab (LAB) Seminar (S Recitation (RCT) Studio (ST Internship (INT)	nt Study (IND) SEM) U)			
Prerequisite(s): CLIM 111 and MATH 114; or permi instructor	Corequisite(s):	Instructio X 100% fac Hybrid: ≤ 100% ele	nal Mode: ce-to-face 50% electronically delivered ectronically delivered			
Special Instructions: (list restrictions for major, college, or degree; hard-coding; etc.) Are there equivalent course(s)? Yes X No If yes, please list						
Catalog Copy for NEW Course	es Only (Consult University Ca	talog for models)				
Description (No more than 60 words, u	use verb phrases and present te	nse) Notes (List additional information for the	course)			
as a thermodynamics of the atmosphere, pr as a thermodynamic system, atmospher formation and stability indices	ric stability and convection, clou	d				
Indicate number of contact hours: When Offered: (check all that apply)	Hours of Lecture or Ser	ninar per week: 3 Hours of Lab o	r Studio:			
(onoon an that apply)		· · · ~F				
Approval Signatures						
Department Approval	Date	College/School Approval	Date			
If this course includes subject matter	r currently dealt with by any o	ther units, the originating department must circula	te this proposal for review by			
those units and obtain the necessary sig	gnatures prior to submission. Fa Unit Approval Name	ilure to do so will delay action on this proposal.	Date			
For Graduate Courses On	ly					

Graduate Council Member

Provost Office

Graduate Council Approval Date

Course Proposal Submitted to the Curriculum Committee of the College of Science

1. <u>COURSE NUMBER AND TITLE</u>: CLIM 309 Introduction to Atmospheric Thermodynamics

Course Prerequisites: CLIM 111 and MATH 114 (or equivalent); or permission of instructor

Catalog Description:

Thermodynamics of the atmosphere, properties of dry and moist air, air parcel as a thermodynamic system, atmospheric stability and convection, cloud formation and stability indices

2. <u>COURSE JUSTIFICATION</u>:

Course Objectives:

Students will be able to (1) Develop an understanding of atmospheric thermodynamic processes;(2) Acquire the mathematical skill and physical principles of atmospheric thermodynamics;(3) Apply the mathematical skill and physical principles to solving atmospheric thermodynamics problems.

Course Necessity:

Atmospheric thermodynamics is one of the core foundations of meteorology. Concepts are applied to weather analyses and forecasting.

Course Relationship to Existing Programs:

This course will fulfill the requirement of the US OPM requirement on GS-1340 Meteorology series in atmospheric thermodynamics.

Course Relationship to Existing Courses:

This course builds on the fundamental of atmospheric science and introduces students to atmospheric thermodynamics, complements atmospheric dynamics, synoptic meteorology as the core of meteorology

3. <u>APPROVAL HISTORY</u>:

New course

4. SCHEDULING AND PROPOSED INSTRUCTORS:

Semester of Initial Offering: Spring 2014

Proposed Instructors: Long Chiu

5. <u>TENTATIVE SYLLABUS</u>: see following page

CLIM 309 Introduction to Atmospheric Thermodynamics

Instructor: Long Chiu

Catalogue Description:

Thermodynamics of the atmosphere, properties of dry and moist air, air parcel as a thermodynamic system, atmospheric stability and convection, cloud formation and stability indices

Course Objectives:

Students (1) Develop an understanding of atmospheric thermodynamic processes; (2) Acquire the mathematical skill and physical principles of atmospheric thermodynamics; (3) Apply the mathematical skill and physical principles to solving atmospheric thermodynamics problems.

Prerequisites: CLIM 111 and MATH 114, or permission of instructor

Grading: Home work: 30%, Mid-term: 30%, Final: 40%

There are 6 HW problem sets. Each set carries 5% of total grade. HW problems are due the week after they are assigned.

Course Text:

Petty, G. W., 2008: A First Course in Atmospheric Thermodynamics, Sundog Pub., Madison Wisconsin, 334pp This book may be purchased directly from the publisher <u>Sundog Publishing, LLC</u> or through on-line booksellers.

Course Resources:

Atmospheric sounding <u>http://weather.uwyo.edu/upperair/sounding.html</u> AMS glossary of meteorology <u>http://glossary.ametsoc.org/wiki/Main_Page</u>

Week (Monday of week)	Topics	Reading	HW assignment
1 (Jan 20, Monday	Atmospheric composition and structure; Math review	Section 1.1; 1.2	
no class)		Appendix C	
2 (Jan 27)	Temperature, problem solving tutorial	1.3; Appendix B	
3 (Feb 3)	Thermodynamic systems and variables, equation of state of dry air	2.1; 2.2; 3.1	HW#1
4 (Feb 10)	Equation of state of moist air, buoyancy	3.2; 3.3; 3.4; 3.5	HW#2
5 (Feb 17)	Pressure	4.1; 4.2	
6 (Feb 25)	Pressure application and First law of thermodynamics	4.3; 5.1; 5.2	HW#3
7 (Mar 4)	Dry adiabatic process	5.3; 5.4	Mid-term
8 (Mar 10)	Spring Recess (no class)		
9 (Mar 17)	Heat engines, Carnot cycle;	5.5; 5.6; 5.7;	

Tentative Syllabus and Schedule

10 (Mar 24)	Skew-T diagram; Second Law	5.8; 6.1; 6.2;	HW#4
11 (Mar 31)	Moist processes; Clausius-Clapeyron equation	7.1; 7.2; 7.3; 7.4	
12 (Apr 7)	Moisture variables, LCL, moist adiabatic lapse rate	7.5; 7.6; 7.7	HW#5
13 (Apr 14)	Equivalent potential and web-bulb temperature	7.8; 7.9;7.10	
14 (Apr 21)	Atmospheric stability	8.1; 8.2; 8.3	HW#6
15 (Apr 28)	Atmospheric convection and stability indices	8.4; 8.5	
(May 7-24)	Final Exam		