Deep Learning Introduction and Natural Language Processing Applications

GMU CSI 899

Jim Simpson, PhD
Jim.Simpson@Cynnovative.com

9/18/2017
Agenda

• Fundamentals
 • Linear and Logistic Regression
 • Logistic Regression to Neural Networks
 • Neural Networks to Deep Learning
 • Representation Learning with Deep Neural Networks

• Natural Language Processing Applications
 • Word Embeddings/Vectors
 • Word2Vec
 • Language Models
 • Long-Short-Term-Memory Recurrent Neural Networks

• Additional Reading
Deep Learning Models

- Are Neural Networks with more than one hidden layer

Neural Networks

- Are two-dimensional arrays of Logistic Regressors loosely inspired by how neurons are connected in the mammalian brain

Deep Learning vs Traditional Machine Learning

- Deep Learning can learn complex non-linear relationships in the data
- Can do this without explicit manual feature engineering
- Adapts to all types of data (even unstructured – images and natural language)
Regression Analysis Overview

- **Linear Regression**
 - Dependent Variable (Predictions): Continuous
 - Simple Case: Equation of a line
 \[y = \beta_0 + \beta_1 x \]
 - Multiple Linear Regression:
 \[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 \]

- **Logistic Regression**
 - Dependent Variable (Predictions): Categorical
 - Simple Case: Sigmoid function
 \[y = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}} \]
 - Multiple Logistic Regression:
 \[\text{logit}(Y) = \ln \left(\frac{Y}{1 - Y} \right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 \]
Two input dimensions are combined linearly to form single dimension output.

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 \]
Logistic Regression to Neural Networks

- Add extra steps between input and output

- With multiple dimensions
Neural Networks with Hidden Units

- Add non-linearity through layering activation functions

![Diagram of neural network with hidden units](image)

- Advantages
 - Adding these Hidden Units allows us to capture complex interactions between the variables, whereas we previously treated them as linearly independent
 - The non-linearity on the Hidden Units results in a warping of the feature space that is hard to visualize but really beneficial
 - Being able to choose the number of Hidden Units allows us to change the dimensionality of the problem, potentially making classification far easier in a higher-dimensional space

\[f(x) = \tanh(x) \]
Deep Learning uses Neural Networks with multiple hidden layers.

- Number of neurons per layer and number of layers become hyper-parameters.

Input Dimension e.g. Number of pixels in image

Output Classes e.g. Numbers 0-9 in Digits Recognition

Input Dimension

Output Classes
Logistic Regression without Feature Engineering

Logistic Regression without manual feature engineering is NOT able to separate blue dots from orange dots

http://playground.tensorflow.org/#activation=relu®ularization=L2&batchSize=20&dataset=circle®Dataset=reg-plane&learningRate=0.1®ularizationRate=0.001&noise=0&networkShape=&seed=0.27923&showTestData=false&discretize=false&percTrainData=80&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
Learning Non-linear Decision Boundaries

Logistic Regression with Manual Feature Engineering

Adding additional hand derived features allows logistic regression to separate blue dots from orange dots

http://playground.tensorflow.org/#activation=relu®ularization=L2&batchSize=20&dataset=circle®Dataset=reg-plane&learningRate=0.1®ularizationRate=0.001&noise=0&networkShape=&seed=0.27923&showTestData=false&discretize=false&percTrainData=80&x=true&y=true&xTimesY=false&xSquared=true&ySquared=true&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
Neural Network without Manual Feature Engineering

A very simple neural network can separate the two without any manual feature engineering.
Learning Non-linear Decision Boundaries

Deep Neural Network

http://playground.tensorflow.org/#activation=relu®ularization=L2&batchSize=20&dataset=spiral®Dataset=reg-plane&learnRate=0.03®ularizationRate=0.001&noise=0&networkShape=8,8,6&seed=0.99514&showTestData=false&discretize=false&percTrainData=80&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
Natural Language Processing (NLP) Tasks and Recurrent Neural Networks

- NLP Applications
 - Sentiment Analysis
 - Machine Translation
 - Question Answering
 - Dialogue Agents
 - Language Generation

- Common Across all Applications
 - Recurrent Neural Networks (RNNs)
 - Word Embeddings/Vectors

Recommended Resource: Stanford CS224d/n: Natural Language Processing with Deep Learning:
http://web.stanford.edu/class/cs224n/
Problem: consider the sentence

“I made her duck”

Approach: Distributional Hypothesis

“You shall know a word by the company it keeps” – J. R. Firth

Solution: Word Embeddings/Vectors

https://www.tensorflow.org/tutorials/word2vec
Given a corpus with these three sentences

- I like deep learning.
- I like NLP.
- I enjoy flying.

Co-Occurrence Matrix

<table>
<thead>
<tr>
<th>counts</th>
<th>I</th>
<th>like</th>
<th>enjoy</th>
<th>deep</th>
<th>learning</th>
<th>NLP</th>
<th>flying</th>
<th>.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>like</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>enjoy</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>deep</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>learning</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>NLP</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>flying</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Singular Value Decomposition

- Problems:
 - Computation scales quadratically for n x m matrix: O(mn²)
 - Hard to add new words or documents
• Instead of capturing co-occurrence counts directly
• Predict surrounding words of every word
• In a window of length c of every word
• Objective function: Maximize the log probability of any context word given current center word:

\[J(\theta) = \frac{1}{T} \sum_{t=1}^{T} \sum_{-c \leq j \leq c, j \neq 0} \log p(w_{t+j} | w_t) \]

• Simplest first formulation for conditional probability:

\[p(w_O | w_I) = \frac{\exp \left(v'_w^T v_{w_I} \right)}{\sum_{w=1}^{W} \exp \left(v'_w^T v_{w_I} \right)} \]
Word2Vec: Skip-Gram with Negative Sampling

- Word2Vec embeds each word into a low-dimensional vector space using:
 - Skip-Gram: Train for center word w_I at time t in a local context window of length c
 - Negative Sampling: Clever way to frame the problem as a supervised classification problem

Maximize probability of: **a true pair**
 (the center word and word in its context window)

$$J(\theta) = \log \sigma(v'_wO^T v_{w_I}) + \sum_{i=1}^{k} \mathbb{E}_{w_i \sim P_n(w)} \left[\log \sigma(-v'_w_i^T v_{w_I}) \right]$$

This simple logistic regression problem moves the vectors for the true pair closer

Minimize probability of: **a couple of random pairs**
 (the center word and a random word outside context window)

This simple logistic regression problem moves the vectors for the random pairs apart
Reduced Dimensional (300-dim to 2-d) Word Vectors Trained on English Wikipedia

Relationships

- niece
- aunt
- sister
- nephew
- uncle
- woman
- brother
- man

Superlatives

- slowest
- slower
- shorter
- short

Named Entities

- Chrysler
- United
- Exxon
- Wal-Mart
- IBM
- Citigroup
- Marchionne
- Smisek
- Tillerson
- McMillon
- Corbat
- Rometty
Language Model using Word Vectors

- A language model:
 - Assigns probabilities to sentences (sequence of m words)
 - By predicting next word w_i, in a sentence given history of $i - 1$ previous words

$$P(w_1, \ldots, w_m) = \prod_{i=1}^{m} P(w_i \mid w_1, \ldots, w_{i-1})$$

- It is a classification problem where the target class at each iteration is w_i
- The model is trained to predict a probability distribution over the vocabulary
- The loss or error is the distance between the prediction and the target
Language Model using Neural Networks

- Trained using a Recurrent Neural Networks (RNNs):
 - Neural networks with feedback loops, allowing information to persist
 - Natural architecture for working with sequences

- With Long-Short-Term Memories (LSTMs):
 - RNNs with more complex units
 - To capture both long-term and short-term dependencies
Single Cell Visualization of Language Model trained on Linux Source Code

Cell that turns on inside comments and quotes:
```c
/* duplicate LSM field information. The lsm_rule is opaque, so
 * re-initialized. */
static inline int audit_dupe_lsm_field(struct audit_field *df,
                                 struct audit_field *sf)
{
    int ret = 0;
    char *lsm_str;
    /* our own copy of lsm_str */
    lsm_str = kstrdup(sf->lsm_str, GFP_KERNEL);
    if (unlikely(!lsm_str))
        return -ENOMEM;
    df->lsm_str = lsm_str;
    /* our own (refreshed) copy of lsm_rule */
    ret = security_audit_rule_init(df->type, df->op, df->lsm_str,
                                 (void **)&df->lsm_rule);
    /* Keep currently invalid fields around in case they
     * become valid after a policy reload. */
    if (ret == -EINVAL) {
        pr_warn("audit rule for LSM %s is invalid\n",
                df->lsm_str);
        ret = 0;
    }
    return ret;
}
```

Cell that is sensitive to the depth of an expression:
```c
#ifdef CONFIG_AUDITSYSCALL
static inline int audit_match_class_bits(int class, u32 *mask)
{
    int i;
    if (classes[class]) {
        for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
            if (mask[i] & classes[class][i])
                return 1;
    }
    return 0;
}
```

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
Cell that might be helpful in predicting a new line. Note that it only turns on for some ‘\n’:
char *audit_unpack_string(void **bufp, size_t *remain, size_t len)
{
 char *str;
 if (!bufp || (len == 0) || (len > *remain))
 return ERR_PTR(-EINVAL);
 /* Of the currently implemented string fields, PATH_MAX defines the longest valid length. */
 if (len > PATH_MAX)
 return ERR_PTR(-ENAMETOOLONG);
 str = kmalloc(len + 1, GFP_KERNEL);
 if (unlikely(!str))
 return ERR_PTR(-ENOMEM);
 memcpy(str, *bufp, len);
 str[len] = 0;
 *bufp += len;
 *remain -= len;
 return str;
}
Additional Reading

• Papers
 • https://arxiv.org/abs/1606.06737v2

• Blog Posts
 • Andrej Karpathy: The Unreasonable Effectiveness of Recurrent Neural Networks
 • http://karpathy.github.io/2015/05/21/rnn-effectiveness/
 • Chris Olah: Understanding LSTM Networks
 • http://colah.github.io/posts/2015-08-Understanding-LSTMs/
 • Chris Olah: Attention and Augmented Recurrent Neural Networks
 • https://distill.pub/2016/augmented-rnns/

• Code!
 • Keras: https://github.com/fchollet/keras-resources
 • TensorFlow: https://www.tensorflow.org/tutorials/
Research Ideas

• Uncertainty of Predictions in Recurrent Neural Networks
 • http://mlg.eng.cam.ac.uk/yarin/blog_2248.html
 • Tom Wiecki: Bayesian Deep Learning
 • http://twiecki.github.io/blog/2016/06/01/bayesian-deep-learning/
 • Uber Engineering: Application Motivation

• Distributed Deep Learning of Recurrent Neural Networks
 • Scaling Out using Spark and Scaling Up using TensorFlow/Keras
 • https://github.com/databricks/tensorframes
 • https://github.com/yahoo/TensorFlowOnSpark
 • https://github.com/cerndb/dist-keras

Computer Vision Tasks and Convolutional Neural Networks

- Computer Vision Applications
 - Image Classification
 - Object Detection
 - Semantic Segmentation
 - Image Captioning
 - Style Transfer
 - Image Generation

- Common Across All Applications
 - Convolutional Neural Networks

Recommended Resource: Stanford CS231n: Convolutional Neural Networks for Visual Recognition:
http://cs231n.stanford.edu

9/18/17
Convolutional Neural Networks

Deep Learning learns layers of features
Convolutional Neural Networks