ELECTRON–PHONON INTERACTION IN THE Ba(K)Pb(Bi)O₄ SYSTEM

D.A. PAPACONSTANTOPOULOS and G.D. DREW
Naval Research Laboratory, Washington, DC 20375–5000, USA
F. CYROT–LACKMANN, A. PASTUREL and J.P. JULIEN
CNRS, 25 Avenue des Martyrs, 166 X 38042 Grenoble, CEDEX France

We have used the results of band structure calculations to evaluate the electron-phonon coupling and the superconducting transition temperature in the cubic perovskites Ba(K)Pb(Bi)O₄.

1. INTRODUCTION

The discovery of superconductivity in BaPbₓBi₂O₅ and in BaₓKBiO₃ with maximum transition temperature T_c of 12K and 30K respectively has generated many investigations to explain the mechanism and understand the relationship between these systems and the other high T_c cuprate superconductors. The apparent absence of magnetic order and the large isotope effect in the cubic perovskites has led to a consensus that the pairing mechanism is the conventional electron-phonon interaction. We present here a quantitative evaluation of the parameters responsible for BCS superconductivity.

2. METHOD

We have performed band structure calculations of the cubic perovskites BaPbO₄, BaBiO₃ and KBiO₃ by the augmented plane wave (APW) method. Using the APW results we constructed tight-binding Hamiltonians by an accurate least-squares fit. We then used the coherent potential approximation to study disorder effects on BaPbₓBi₂O₅ and BaₓKBiO₃. Details of these calculations will be published elsewhere. In this paper we report the evaluation of the electron-phonon coupling. Our approach is to evaluate the McMillan–Hopfield parameter $\eta = \langle T\rangle N(\varepsilon_F)$, where $N(\varepsilon_F)$ is the density of states at the Fermi level and $\langle T\rangle$ is an electron–ion matrix element that we calculate from our band structure results in the rigid muffin-tin approximation (RMTA). We then use the McMillan equation to find the superconducting transition temperature, i.e.

$$T_c = \frac{<\omega>}{1.45} \exp\left[-\frac{1.04(1+\lambda)}{\lambda-\mu^\ast-0.62\lambda\mu^\ast}\right]$$

where we set the Coulomb pseudopotential $\mu^\ast = 0.1$ and the electron–phonon coupling $\lambda = \frac{1}{<\omega>} \sum_{\gamma} \frac{1}{n_B} (\eta/M\chi)$ since the average phonon frequency is not known for these materials we vary $<\omega>$ from 200K to 500K.

3. RESULTS

In Fig. 1 we show our results of T_c vs $<\omega>$ and λ vs $<\omega>$ corresponding to the RMTA values of η for the ideal cubic BaBiO₄ which has the strongest values of η from this family of perovskites. We note that both η and T_c decrease with increasing $<\omega>$ and that for $<\omega>$ close to 300K we obtain $\lambda = 1$ and $T_c = 20K$ which is consistent with the experimental values for the BaₓKBiO₃ system.

Since it has been argued that the RMTA seriously underestimates the value of η, we have arbitrarily raised η by a factor of 2. We have repeated our calculation and find that the variation of T_c and λ with $<\omega>$ shows a maximum T_c of approximately 37K at $<\omega> = 300K$ and a corresponding λ of 2.1 as is shown in Fig. 2.

So it appears that if the estimate that the value of λ in these materials is indeed higher than the RMTA value, one would obtain T_c in the range of 30K in agreement with experiment.

As an aside we present in Table 1 the values

0921-4534/89/$03.50 © Elsevier Science Publishers B.V. (North-Holland)
of η and T_c as a function of $<\omega>$ for values of η 1 to 5 times the RMTO value η_0. It is interesting to note that for the high values of η despite the very large values of λ, T_c doesn't exceed 60K. This observation should not be taken to mean that T_c has reached a limit within the BCS theory. There would still be higher η or $<\omega>$ which could raise T_c not to mention the possibility of lowering the value of $\mu^*.$

In conclusion we find that the electron-phonon interaction is likely to dominate in the pairing of electrons in the cubic perovskites and, therefore, the BCS theory is probably valid for these materials.

Table 1. Variation of λ and T_c with $<\omega>$ for different values of η. η_0 is the rigid muffin-tin value for BaBiO$_3$ where $\eta_{\text{RMT}}=0$, $\eta_{\text{RMT}}=0.7 \text{eV/Å}^2$ and $\eta_{\text{RMT}}=2.7 \text{eV/Å}^2$

<table>
<thead>
<tr>
<th>$<\omega>$</th>
<th>η_0</th>
<th>T_c (λ)</th>
<th>η</th>
<th>T_c (λ)</th>
<th>η</th>
<th>T_c (λ)</th>
<th>η</th>
<th>T_c (λ)</th>
<th>η</th>
<th>T_c (λ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>2.4</td>
<td>26</td>
<td>4.8</td>
<td>35</td>
<td>7.2</td>
<td>38</td>
<td>9.6</td>
<td>40</td>
<td>11.9</td>
<td>41</td>
</tr>
<tr>
<td>300</td>
<td>1.1</td>
<td>19</td>
<td>2.1</td>
<td>37</td>
<td>3.2</td>
<td>46</td>
<td>4.3</td>
<td>51</td>
<td>5.3</td>
<td>54</td>
</tr>
<tr>
<td>400</td>
<td>0.6</td>
<td>7.5</td>
<td>1.2</td>
<td>30</td>
<td>1.8</td>
<td>44</td>
<td>2.4</td>
<td>53</td>
<td>3.0</td>
<td>59</td>
</tr>
<tr>
<td>500</td>
<td>0.4</td>
<td>1.4</td>
<td>0.8</td>
<td>18</td>
<td>1.2</td>
<td>35</td>
<td>1.5</td>
<td>48</td>
<td>1.9</td>
<td>58</td>
</tr>
</tbody>
</table>

Fig. 1 Variation of T_c and λ for $\eta=\eta_0$.

Fig. 2 Variation of T_c and λ for $\eta=2\eta_0$.

REFERENCES

ACKNOWLEDGMENT

We wish to thank Dr. W. E. Pickett for several discussions and suggestions. This work was partially supported by the ONR.