THEORETICAL STUDIES OF Sr$_2$VO$_4$, A CHARGE CONJUGATE ANALOG OF La$_2$CuO$_4$.

W. E. PICKETT, D. SINGH, and D. A. PAPACONSTANTOPoulos

Naval Research Laboratory, Washington, DC 20375-5000, USA

H. KRAKAUER

College of William and Mary, Williamsburg VA 23185

M. CYROT and F. CYROT-LACKMANN

CNRS, 25 Avenue des Martyrs, 166 X 38042 Grenoble, CEDEX France

We have used local (spin) density theory to study the atomic geometry and electronic structure of K$_2$NiF$_4$-structure Sr$_2$VO$_4$. The calculations correctly predict the Cu-O distance, reflecting a negative Jahn-Teller distortion (relative to La$_2$CuO$_4$). The oxygen p bands are filled, leaving one d electron per V, but in the paramagnetic phase three bands cross E_F rather than having a single half-filled band. We find a ferromagnetic instability within local spin density theory, rather than the antiferromagnetic insulator seen experimentally.

Since the only known compounds having superconducting transition temperature T_C above 35 K contain CuO$_2$ layers as a basic structural unit, there is strong interest in determining whether there are new systems without CuO$_2$ layers which contain high T_C materials. Since these systems are hole conductors, at least in the sense that the broad complex of Cu-O valence bands are nearly filled, an alternative is to look for charge conjugate counterparts which are electron conductors. The Na$_2$CuO$_2$-based materials have Hall coefficients of opposite sign to the other Cu-O systems, but the overall electronic structure is very similar.

An unusually interesting material is Sr$_2$VO$_4$, for which formal valence counting leads to (Sr$^{2+}$)$_2$(V$^{4+}$O$^{2-}$)$_4$, containing only one d electron per V outside closed shells. This compound exists in the K$_2$NiF$_4$ structure, and is tentatively identified as a narrow gap (<0.1 eV) antiferromagnetic (AFM) insulator (T_C<100 K. The AFM state is not unexpected, since the single d electron per V can be expected to lead to a half-filled d band and the accompanying AFM instability.

We have applied the full-potential Linearized Augmented Plane Wave method to compute the electronic band structure and total energy of Sr$_2$VO$_4$, using the Hedin-Lundqvist (von Barth-Hedin) exchange-correlation functionals for the paramagnetic (spin-polarized) cases. The experimental values $a=3.827$ Å, $c=12.574$ Å, and $\Delta E_c=0.355$ were used. Total energy studies determined the minimum at a Vu Q distance of 2.01 Å, subsequently verified by neutron diffraction studies. Although this distance is 5% larger than the Vu-O$_{xy}$ distance of 1.91 Å, it is much smaller than the 2.4 Å distance in La$_2$CuO$_4$, consistent with a JT effect of opposite sign.

Self-consistent solutions indicated the ferromagnetic (FM) state is more stable than the paramagnetic state by 6.1 mRy/cell. In the FM case we find 12 filled O p bands 5 eV wide, separated by 1 eV from the valence V d bands containing one electron per V atom (Fig. 1). However, there are three bands crossing

0921-4534/89/503.50 © Elsevier Science Publishers B.V. (North-Holland)
the Fermi level E_F, two light mass bands and a heavy mass band leading to a highly anisotropic FS and a large peak at E_F. This peak promotes the FM instability, the resulting d band exchange splitting being 0.7 eV. The FM spin-resolved partial densities of states are shown in Fig. 2; note there is no appreciable polarization of the O p states.

We have made careful attempts (including extensive tests of k-point sampling) without success, to obtain an AFM solution of the same symmetry as is found in La$_2$CuO$_4$. The FS is neither simple nor two dimensional, due to the considerable dispersion of bands at E_F along the c direction, which leads to a pair of closed, three dimensional spheroids as well as a more complex shaped FS, each centered at Γ.

The 5 eV bandwidth of the O p complex is not surprising, since McMahan et al. showed that direct O-O overlap leads to a similar bandwidth in La$_2$CuO$_4$. The dispersion of the V d bands (greater than 4 eV) is somewhat more surprising, since the d states are well separated from one another and interaction must proceed through the intermediate O p states, which are lower in energy and filled. Nevertheless, substantial p-d hybridization exists. Crystal field splittings can also contribute to the total d band width; however, since the CuQ octahedron is not far from cubic, such contributions may be secondary.

Acknowledgments. Work at NRL was supported by the Office of Naval Research. H.K. was supported by NSF Grant No. DMR-87-19535. Computations were done at the Cornell National Supercomputer Facility.

REFERENCES

3. For a review see W. E. Pickett, Rev. Mod. Phys. 61, 433 (1989).